Improvements to Vanilla Implementation of Q-Learning Used in Path Planning of an Agent | SpringerLink
Skip to main content

Improvements to Vanilla Implementation of Q-Learning Used in Path Planning of an Agent

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

  • 400 Accesses

Abstract

The Vanilla Reinforcement Learning algorithm for path planning in a 2-D world suffers from high mean path length and large iterations to optimize its path. An approach involving multi agents sharing common knowledge of the world has been simulated to improve the results. Multi agents increase the exploration area of the map without affecting the explore–exploit dilemma. Keeping in mind that in the real world agents may have vision, a simple yet effective vision-based technique has been proposed where an agent can locate its goal if it lies in its line of sight and not blocked by obstacles. An environment is designed in Python 3 that uses dynamically generated maps of different sizes to simulate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 32889
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masehian, E., Sedighizadeh, D.: Classic and heuristic approaches in robot motion planning—A chronological review. Proc. World Acad. Sci. Eng. Technol. 101–106 (2007)

    Google Scholar 

  2. Xianyi, Y., Meng, M.: A neural network approach to real-time motion planning and control of robot manipulators. Proc. IEEE/SMC 4, 674–679 (1999)

    Google Scholar 

  3. Yang, B., Li, W., Wang, J., Yang, J., Wang, T., Liu, X.: A novel path planning algorithm for warehouse robots based on a two-dimensional grid model. https://doi.org/10.1109/ACCESS.2020.2991076

  4. Zheng, T., Xu, Y., Zheng, D.: AGV path planning based on improved A-star algorithm. In: Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1534–1538 (2019)

    Google Scholar 

  5. Bae, H., Kim, G., Kim, J., Qian, D., Lee, S.: Multi-robot path planning method using reinforcement learning. Appl. Sci. 9, 3057 (2019)

    Google Scholar 

  6. Sichkar, V.N.: Reinforcement learning algorithms in global path planning for mobile robot. In: 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1–5 (2019). https://doi.org/10.1109/ICIEAM.2019.8742915

  7. Butyrev, L., Edelhäußer, T., Mutschler, C.: Deep reinforcement learning for motion planning of mobile robots (2019). arXiv:1912.09260

  8. Jiang, J., Dun, C., Huang, T., Lu, Z.: ICLR 2020 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuiya, A., Satapathy, S.C. (2022). Improvements to Vanilla Implementation of Q-Learning Used in Path Planning of an Agent. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_24

Download citation

Publish with us

Policies and ethics