SONAS: A System to Obtain Insights on Web APIs from Stack Overflow | SpringerLink
Skip to main content

SONAS: A System to Obtain Insights on Web APIs from Stack Overflow

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1330))

  • 1185 Accesses

Abstract

In recent years, we have witnessed the rapid development of types and quantities of Web APIs. However, it is challenging for users to select Web APIs that best match their requirements and to learn how to invoke a Web API correctly. Although Web API providers often publish documents that describe the functionalities of Web APIs and how to use them, users still have to collect information to acquire knowledge about the usage information of Web APIs. Stack Overflow, the largest programming-related question-and-answer (Q&A) website, has many posts about Web APIs. Therefore, we have designed and implemented a System to Obtain iNsights on Web APIs from Stack Overflow (SONAS). SONAS collects questions related to Web APIs and classifies them into different categories using a deep learning model. The statistics on the numbers of different types of questions indicate the usage information of Web APIs. Furthermore, SONAS predicts the future usage trends of Web APIs, based on a long short-term memory model with multi-task learning. The experiments on a real-world dataset prove SONAS can provide useful insights on Web APIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017)

    Article  Google Scholar 

  2. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the world wide web. In: Eighth IEEE European Conference on Web Services 2010, pp. 107–114. IEEE (2010)

    Google Scholar 

  3. Cheron, A., Bourcier, J., Barais, O., Michel, A.: Comparison matrices of semantic RESTful APIs technologies. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 425–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_30

    Chapter  Google Scholar 

  4. Shi, M., Liu, J., Zhou, D., Tang, M., Cao, B.: WE-LDA: a word embeddings augmented LDA model for web services clustering. In: IEEE International Conference on Web Services (icws), 2017, pp. 9–16. IEEE (2017)

    Google Scholar 

  5. Maleshkova, M., Zilka, L., Knoth, P., Pedrinaci, C.: Cross-lingual web API classification and annotation. In: Proceedings of the 2nd International Conference on Multilingual Semantic Web, vol. 775, pp. 1–12. CEUR-WS. org. (2011)

    Google Scholar 

  6. Wang, H., Wang, L., Yu, Q., Zheng, Z., Bouguettaya, A., Lyu, M.R.: Online reliability prediction via motifs-based dynamic Bayesian networks for service-oriented systems. IEEE Trans. Softw. Eng. 43(6), 556–579 (2016)

    Article  Google Scholar 

  7. Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QoS prediction for web service recommendation and selection. Exp. Syst. Appl. 53, 75–86 (2016)

    Article  Google Scholar 

  8. Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web service APIs. IEEE Trans. Serv. Comput. 1 (2018, early access). https://doi.org/10.1109/TSC.2018.2847344

  9. Yang, Y., Qamar, N., Liu, P., Grolinger, K., Wang, W., Li, Z., Liao, Z.: Servenet: a deep neural network for web service classification. arXiv preprint arXiv:1806.05437, 2018

  10. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted classification based approach to search and rank web APIs. In: 2008 IEEE International Conference on Web Services, pp. 177–184. IEEE (2008)

    Google Scholar 

  11. Torres, R., Tapia, B., et al.: Improving web API discovery by leveraging social information. In: 2011 IEEE International Conference on Web Services, pp. 744–745. IEEE (2011)

    Google Scholar 

  12. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation in mashup development. In: 2014 IEEE International Conference on Web Service, pp. 289–296. IEEE (2014)

    Google Scholar 

  13. Wan, Y., Chen, L., Wu, J., Yu, Q.: Time-aware API popularity prediction via heterogeneous features. In: 2015 IEEE International Conference on Web Services, pp. 424–431. IEEE (2015)

    Google Scholar 

  14. Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M.: Are code examples on an online q&a forum reliable?: A study of API misuse on stack overflow. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 886–896. IEEE (2018)

    Google Scholar 

  15. Treude, C., Robillard, M.P.: Augmenting API documentation with insights from stack overflow. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 392–403. IEEE (2016)

    Google Scholar 

  16. Venigalla, A.S.M., Lakkundi, C.S., Agrahari, V., Chimalakonda, S.: Stackdoc-a stack overflow plug-in for novice programmers that integrates q&a with API examples. In: 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), vol. 2161, pp. 247–251. IEEE (2019)

    Google Scholar 

  17. Venkatesh, P.K., Wang, S., Zhang, F., Zou, Y., Hassan, A.E.: What do client developers concern when using web APIs? An empirical study on developer forums and stack overflow. In: 2016 IEEE International Conference on Web Services (ICWS), pp. 131–138. IEEE (2016)

    Google Scholar 

  18. Rodríguez, L.J., Wang, X., Kuang, J.: Insights on apache spark usage by mining stack overflow questions. In: IEEE International Congress on Big Data (BigData Congress) 2018, pp. 219–223. IEEE (2018)

    Google Scholar 

  19. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 213–220 (2008)

    Google Scholar 

  20. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? An analysis of topics and trends in stack overflow. Empiric. Softw. Eng. 19(3), 619–654 (2014)

    Article  Google Scholar 

  21. González, J.R.C., Romero, J.J.F., Guerrero, M.G., Calderón, F.: Multi-class multi-tag classifier system for stackoverflow questions. In: IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2015, pp. 1–6. IEEE (2015)

    Google Scholar 

  22. Mordelet, F., Vert, J.-P.: A bagging SVM to learn from positive and unlabeled examples. Pattern Recognit. Lett. 37, 201–209 (2014)

    Article  Google Scholar 

  23. Li, C., Hua, X.-L.: Towards positive unlabeled learning for parallel data mining: a random forest framework. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 573–587. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_45

    Chapter  Google Scholar 

  24. Kaboutari, A., Bagherzadeh, J., Kheradmand, F.: An evaluation of two-step techniques for positive-unlabeled learning in text classification. Int. J. Comput. Appl. Technol. Res. 3, 592–594 (2014)

    Google Scholar 

  25. Sandor, A., Lagos, N., Vo, N.P.A., Brun, C.: Identifying user issues and request types in forum question posts based on discourse analysis. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 685–691 (2016)

    Google Scholar 

  26. Bird, S.: NLTK: The natural language toolkit, pp. 69–72 (2006)

    Google Scholar 

  27. Kim, Y.: Convolutional neural networks for sentence classification, arXiv preprint arXiv:1408.5882 (2014)

  28. Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820 (2015)

  29. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization, arXiv preprint arXiv:1409.2329 (2014)

  30. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)

    Article  Google Scholar 

  32. Zhang, Y., Yang, Q.: A survey on multi-task learning, arXiv preprint arXiv:1707.08114 (2017)

  33. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  34. Ahasanuzzaman, Md, Asaduzzaman, M., Roy, C.K., Schneider, K.A.: CAPS: a supervised technique for classifying stack overflow posts concerning API issues. Empiric. Softw. Eng. 25(2), 1493–1532 (2019). https://doi.org/10.1007/s10664-019-09743-4

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Key Research and Development Plan (No. 2018YFB1003800) and China National Science Foundation (Granted Number 62072301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, N., Cao, J., Qi, Q., Gu, Q., Qian, S. (2021). SONAS: A System to Obtain Insights on Web APIs from Stack Overflow. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2540-4_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2539-8

  • Online ISBN: 978-981-16-2540-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics