Abstract
In recent years, we have witnessed the rapid development of types and quantities of Web APIs. However, it is challenging for users to select Web APIs that best match their requirements and to learn how to invoke a Web API correctly. Although Web API providers often publish documents that describe the functionalities of Web APIs and how to use them, users still have to collect information to acquire knowledge about the usage information of Web APIs. Stack Overflow, the largest programming-related question-and-answer (Q&A) website, has many posts about Web APIs. Therefore, we have designed and implemented a System to Obtain iNsights on Web APIs from Stack Overflow (SONAS). SONAS collects questions related to Web APIs and classifies them into different categories using a deep learning model. The statistics on the numbers of different types of questions indicate the usage information of Web APIs. Furthermore, SONAS predicts the future usage trends of Web APIs, based on a long short-term memory model with multi-task learning. The experiments on a real-world dataset prove SONAS can provide useful insights on Web APIs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017)
Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the world wide web. In: Eighth IEEE European Conference on Web Services 2010, pp. 107–114. IEEE (2010)
Cheron, A., Bourcier, J., Barais, O., Michel, A.: Comparison matrices of semantic RESTful APIs technologies. In: Bakaev, M., Frasincar, F., Ko, I.-Y. (eds.) ICWE 2019. LNCS, vol. 11496, pp. 425–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19274-7_30
Shi, M., Liu, J., Zhou, D., Tang, M., Cao, B.: WE-LDA: a word embeddings augmented LDA model for web services clustering. In: IEEE International Conference on Web Services (icws), 2017, pp. 9–16. IEEE (2017)
Maleshkova, M., Zilka, L., Knoth, P., Pedrinaci, C.: Cross-lingual web API classification and annotation. In: Proceedings of the 2nd International Conference on Multilingual Semantic Web, vol. 775, pp. 1–12. CEUR-WS. org. (2011)
Wang, H., Wang, L., Yu, Q., Zheng, Z., Bouguettaya, A., Lyu, M.R.: Online reliability prediction via motifs-based dynamic Bayesian networks for service-oriented systems. IEEE Trans. Softw. Eng. 43(6), 556–579 (2016)
Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QoS prediction for web service recommendation and selection. Exp. Syst. Appl. 53, 75–86 (2016)
Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web service APIs. IEEE Trans. Serv. Comput. 1 (2018, early access). https://doi.org/10.1109/TSC.2018.2847344
Yang, Y., Qamar, N., Liu, P., Grolinger, K., Wang, W., Li, Z., Liao, Z.: Servenet: a deep neural network for web service classification. arXiv preprint arXiv:1806.05437, 2018
Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted classification based approach to search and rank web APIs. In: 2008 IEEE International Conference on Web Services, pp. 177–184. IEEE (2008)
Torres, R., Tapia, B., et al.: Improving web API discovery by leveraging social information. In: 2011 IEEE International Conference on Web Services, pp. 744–745. IEEE (2011)
Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation in mashup development. In: 2014 IEEE International Conference on Web Service, pp. 289–296. IEEE (2014)
Wan, Y., Chen, L., Wu, J., Yu, Q.: Time-aware API popularity prediction via heterogeneous features. In: 2015 IEEE International Conference on Web Services, pp. 424–431. IEEE (2015)
Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M.: Are code examples on an online q&a forum reliable?: A study of API misuse on stack overflow. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 886–896. IEEE (2018)
Treude, C., Robillard, M.P.: Augmenting API documentation with insights from stack overflow. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 392–403. IEEE (2016)
Venigalla, A.S.M., Lakkundi, C.S., Agrahari, V., Chimalakonda, S.: Stackdoc-a stack overflow plug-in for novice programmers that integrates q&a with API examples. In: 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), vol. 2161, pp. 247–251. IEEE (2019)
Venkatesh, P.K., Wang, S., Zhang, F., Zou, Y., Hassan, A.E.: What do client developers concern when using web APIs? An empirical study on developer forums and stack overflow. In: 2016 IEEE International Conference on Web Services (ICWS), pp. 131–138. IEEE (2016)
Rodríguez, L.J., Wang, X., Kuang, J.: Insights on apache spark usage by mining stack overflow questions. In: IEEE International Congress on Big Data (BigData Congress) 2018, pp. 219–223. IEEE (2018)
Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 213–220 (2008)
Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? An analysis of topics and trends in stack overflow. Empiric. Softw. Eng. 19(3), 619–654 (2014)
González, J.R.C., Romero, J.J.F., Guerrero, M.G., Calderón, F.: Multi-class multi-tag classifier system for stackoverflow questions. In: IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2015, pp. 1–6. IEEE (2015)
Mordelet, F., Vert, J.-P.: A bagging SVM to learn from positive and unlabeled examples. Pattern Recognit. Lett. 37, 201–209 (2014)
Li, C., Hua, X.-L.: Towards positive unlabeled learning for parallel data mining: a random forest framework. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 573–587. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_45
Kaboutari, A., Bagherzadeh, J., Kheradmand, F.: An evaluation of two-step techniques for positive-unlabeled learning in text classification. Int. J. Comput. Appl. Technol. Res. 3, 592–594 (2014)
Sandor, A., Lagos, N., Vo, N.P.A., Brun, C.: Identifying user issues and request types in forum question posts based on discourse analysis. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 685–691 (2016)
Bird, S.: NLTK: The natural language toolkit, pp. 69–72 (2006)
Kim, Y.: Convolutional neural networks for sentence classification, arXiv preprint arXiv:1408.5882 (2014)
Zhang, Y., Wallace, B.: A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820 (2015)
Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization, arXiv preprint arXiv:1409.2329 (2014)
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)
Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)
Zhang, Y., Yang, Q.: A survey on multi-task learning, arXiv preprint arXiv:1707.08114 (2017)
Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
Ahasanuzzaman, Md, Asaduzzaman, M., Roy, C.K., Schneider, K.A.: CAPS: a supervised technique for classifying stack overflow posts concerning API issues. Empiric. Softw. Eng. 25(2), 1493–1532 (2019). https://doi.org/10.1007/s10664-019-09743-4
Acknowledgments
This work is partially supported by National Key Research and Development Plan (No. 2018YFB1003800) and China National Science Foundation (Granted Number 62072301).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, N., Cao, J., Qi, Q., Gu, Q., Qian, S. (2021). SONAS: A System to Obtain Insights on Web APIs from Stack Overflow. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_36
Download citation
DOI: https://doi.org/10.1007/978-981-16-2540-4_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2539-8
Online ISBN: 978-981-16-2540-4
eBook Packages: Computer ScienceComputer Science (R0)