Abstract
With the changing of users’ requirements, the number of Web services is growing rapidly. It has been a popular research field to discover the suitable service accurately and quickly in service computing research. At present, most of the Web services published on the Internet are described in natural language. This trend is becoming more and more obvious. Existing service clustering methods are not only limited to a specifically structured document but also rarely consider the relationship between services into semantic information. In response to the problems mentioned above, this paper suggests a Service Clustering method based on Knowledge Graph Representation Learning (SCKGRL). This method firstly crawled the services data from ProgrammableWeb.com, use natural language tools to process the web services description document, and obtain the service function information set. Secondly, we constructed the service knowledge graph by using the service-related information, the triples are converted into vectors and minimize the dimension of service feature vectors due to the knowledge representation learning method. Finally, the services were clustered by the Louvain algorithm. The experiments show that SCKGRL gives better performance compared with other methods, such as LDA, VSM, WordNet, and Edit Distance, which provides on-demand service more accurately.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tian, G., He, K., Wang, J., Sun, C., Xu, J.: Domain-oriented and tag-aided web service clustering method. J. Acta Electronica Sinica 43(7), 1266–1274 (2015)
Xu, Z., Sheng, Y., He, L., Wang, Y.: Review on knowledge graph techniques. J. Univ. Electron. Sci. Technol. China 45(4), 589–606 (2016)
Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International World Wide Web Conferences Steering Committee, pp. 1271–1279 (2017)
Wang, H., Zhang, F., Xie, X., Guo, M.: Deep knowledge-aware network for news recommendation. In: Proceedings of the 2018 World Wide Web Conference, pp. 1835–1844 (2018)
Lin, H., Liu, Y., Wang, W., Yue, Y., Lin, Z.: Learning entity and relation embeddings for knowledge resolution. J. Procedia Comput. Sci. 108, 345–354 (2017)
Bordes, A., Usunier, N., Garcia-duran, A.: Translating embeddings for modeling multi-relational data. J. Adv. Neural Inf. Process. Syst. 2787–2795 (2013)
Wang, Z., Zhang, J.W., Feng, J.L., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI (2014)
Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pp. 687–696 (2015)
Chen, W., Wen, Y., Zhang, X.: An improved TransE-based method for knowledge graph representation. J. Comput. Eng. 46(5), 63–69 (2020)
Cao, Z., Qiao, X., Jiang, S., Zhang, X.: An efficient knowledge-graph-based web service recommendation algorithm. J. Symmetry 11(3), 392 (2019)
Li, Z., Wang, J., Zhang, N., He, C., He, K.: A topic-oriented clustering approach for domain services. J. Comput. Res. Dev. 51(2), 408–419 (2014)
Jiang, B., Ye, L., Wang, J., Wang, Y.: A semantic-based approach to service clustering from service documents. In: IEEE International Conference on Services Computing. IEEE (2017)
Jiang, B., Chen, Y., Wang, Y., Liu, P.: Service discovery method for agile mashup development. In: Sun, Y., Lu, T., Yu, Z., Fan, H., Gao, L. (eds.) ChineseCSCW 2019. CCIS, vol. 1042, pp. 30–49. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1377-0_3
Elgazzar, K., Hassan, A.E., Martin, P.: Clustering WSDL documents to bootstrap the discovery of web services. In: 2010 IEEE International Conference on Web Services (ICWS). IEEE Computer Society (2010)
Yu, Q., Wang, H., Chen, L.: Learning sparse functional factors for large scale service clustering. In: 2015 IEEE International Conference on Web Services (ICWS). IEEE Computer Society (2015)
Yu, Q., Rege, M.: On service community learning: a co-clustering approach. In: 2010 IEEE International Conference on Web Services (ICWS). IEEE Computer Society (2010)
Shi, M., Liu, J., Zhou, D., Cao, B., Wen, Y.: Multi-relational topic model-based approach for web services clustering. J. Chin. J. Comput. 042(004), 820–836 (2019)
Liu, W., Wong, W.: Web service clustering using text mining techniques. J. Int. J. Agent-Oriented Softw. Eng. 3(1), 6–26 (2009)
Shi, M., Liu, J., Zhou, D., Tang, M., Cao, B.: WE-LDA: a word embeddings augmented LDA model for web services clustering. In: 2017 IEEE International Conference on Web Services (ICWS). IEEE Computer Society (2017)
Chen, T., Liu, J., Cao, B., Li, R.: Web services clustering based on biterm topic model. J. Comput. Eng. Sci. 040(010), 1737–1745 (2018)
Zhao, Y., Li, Z., Chen, P., He, J., He, K.: Web service semantic clustering method oriented domain. J. Chin. Comput. Syst. 40(01), 83–90 (2019)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jiang, B., Xu, X., Yang, J., Wang, T. (2021). Service Clustering Method Based on Knowledge Graph Representation Learning. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_2
Download citation
DOI: https://doi.org/10.1007/978-981-16-2540-4_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2539-8
Online ISBN: 978-981-16-2540-4
eBook Packages: Computer ScienceComputer Science (R0)