Emotion Role Identification in Social Network | SpringerLink
Skip to main content

Emotion Role Identification in Social Network

  • Conference paper
  • First Online:
Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence (CCKS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1356))

Included in the following conference series:

  • 1042 Accesses

Abstract

Emotion is a status that combines people’s feelings, thoughts, and behaviors and plays a crucial role in the communication between people. Considerable study suggests that human emotions can also be conveyed through online interactions. For a systematical literature review, we find that few studies focus on the influence of some special users on the process of emotional transmission in online social networks. To fill this gap, we first introduce the definition of emotion role, they are special users who play an important role in the process of emotion contagion of online social networks. We then propose an Emotion Role Mining approach (ERM) to detect users’ emotion roles in social networks. A set of features and measures is proposed and calculated to identify and represent these users based on the analysis of their emotion influence and long-term emotional preferences. Experiments and evaluations are conducted to demonstrate the practicability and usefulness of the proposed approach using Micro-blog data. Comparison experiments indicate that the proposed approach outperforms several baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abnar, A., Takaffoli, M., Rabbany, R., Zaïane, O.R.: SSRM: structural social role mining for dynamic social networks. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2014)

    Google Scholar 

  2. Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Kevan, B.: Collective emotions online and their influence on community life. Plos One 6, e22207 (2011)

    Article  Google Scholar 

  3. Ekman, P.: An argument for basic emotions. Cogn. Emotion 6(3), 169–200 (1992)

    Article  Google Scholar 

  4. Friedkin, N., Johnsen, E.: Social influence networks and opinion change. Adv. Group Process. 16 (1999)

    Google Scholar 

  5. Goyal, S., Vega-Redondo, F.: Structural holes in social networks. J. Econ. Theory 137(1), 460–492 (2007)

    Article  MathSciNet  Google Scholar 

  6. Guillory, J., Spiegel, J., Drislane, M., Weiss, B., Donner, W., Hancock, J.: Upset now?: emotion contagion in distributed groups, pp. 745–748 (2011)

    Google Scholar 

  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  8. Hancock, J., Gee, K., Ciaccio, K., Lin, J.: I’m sad you’re sad: emotional contagion in CMC, pp. 295–298 (2008)

    Google Scholar 

  9. Himelboim, I., Sweetser, K.D., Tinkham, S.F., Cameron, K., Danelo, M., West, K.: Valence-based homophily on twitter: network analysis of emotions and political talk in the 2012 presidential election. New Media Soc. 18(7), 1382–1400 (2014)

    Article  Google Scholar 

  10. Kalia, A., Buchler, N., Ungvarsky, D., Govindan, R., Singh, M.: Determining team hierarchy from broadcast communications (2014)

    Google Scholar 

  11. Kanavos, A., Perikos, I., Hatzilygeroudis, I., Tsakalidis, A.: Emotional community detection in social networks. Comput. Electr. Eng. 65, 449–460 (2018)

    Google Scholar 

  12. Kramer, A.: The spread of emotion via facebook. In: Conference on Human Factors in Computing Systems - Proceedings (2012)

    Google Scholar 

  13. Kramer, A., Guillory, J., Hancock, J.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 111 (2014)

    Google Scholar 

  14. Lazega, E., Burt, R.S.: Structural holes: the social structure of competition. Revue Franaise de Sociologie 36(4), 779 (1995)

    Article  Google Scholar 

  15. Li, W., Xu, H.: Text-based emotion classification using emotion cause extraction. Expert Syst. Appl. 41(4, Part 2), 1742–1749 (2014)

    Google Scholar 

  16. Lou, T., Tang, J.: Mining structural hole spanners through information diffusion in social networks. In: Proceedings of the 22nd International Conference on World Wide Web. WWW 2013, New York, pp. 825–836. Association for Computing Machinery (2013)

    Google Scholar 

  17. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2) (2004)

    Google Scholar 

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report, Stanford InfoLab (1999)

    Google Scholar 

  19. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  20. Tang, J., et al.: Quantitative study of individual emotional states in social networks. IEEE Trans. Affect. Comput. 3(2), 132–144 (2012)

    Article  Google Scholar 

  21. Tchokni, S., eaghdha, D., Quercia, D.: Emoticons and phrases: status symbols in social media. In: Proceedings of the 8th International Conference on Weblogs and Social Media. ICWSM 2014, pp. 485–494 (2014)

    Google Scholar 

  22. Wen, S., Wan, X.: Emotion classification in microblog texts using class sequential rules. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI 2014, pp. 187–193. AAAI Press (2014)

    Google Scholar 

  23. Yuan, Z., Purver, M.: Predicting emotion labels for Chinese microblog texts. In: Gaber, M.M., Cocea, M., Wiratunga, N., Goker, A. (eds.) Advances in Social Media Analysis. SCI, vol. 602, pp. 129–149. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18458-6_7

    Chapter  Google Scholar 

  24. Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling retweeting behaviors. In: Proceedings of the Twenty Third International Joint Conference on Artificial Intelligence. IJCAI 2013, pp. 2761–2767. AAAI Press (2013)

    Google Scholar 

  25. Zhao, Y., Wang, G., Yu, P.S., Liu, S., Zhang, S.: Inferring social roles and statuses in social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, New York, pp. 695–703. Association for Computing Machinery (2013)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation (Grant Nos. 61872298, 61532009, 61802316, and 61902324), the Innovation Fund Of Postgraduate, Xihua University (Grant Nos. ycjj2019023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Du, Y., Xie, C. (2021). Emotion Role Identification in Social Network. In: Chen, H., Liu, K., Sun, Y., Wang, S., Hou, L. (eds) Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence. CCKS 2020. Communications in Computer and Information Science, vol 1356. Springer, Singapore. https://doi.org/10.1007/978-981-16-1964-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1964-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1963-2

  • Online ISBN: 978-981-16-1964-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics