Risk Assessment of Heterogeneous CPS Systems Under Different Proportions of Links | SpringerLink
Skip to main content

Risk Assessment of Heterogeneous CPS Systems Under Different Proportions of Links

  • Conference paper
  • First Online:
Security and Privacy in Social Networks and Big Data (SocialSec 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1298))

  • 838 Accesses

Abstract

In this paper, we study a new coupled network model that multiple equal-mixed models to study the security of the coupled system in distributed heterogeneous environments. We propose a method for analyzing cascading failures, in which we can derive the critical threshold of the coupled system. Then we verify the correctness of the critical threshold by simulation experiments. And the simulation experiments are concluded that the coupled system exhibits a first-order phase transition near the critical threshold. The analytical methods we propose in this paper can analyze the wide range of applicability of coupling systems at various scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Google Scholar 

  2. Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Nat. Acad. Sci. 109(12), E680–E689 (2012)

    Article  Google Scholar 

  3. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Article  Google Scholar 

  4. Dartmann, G., Song, H., Schmeink, A.: Big data analytics for cyber-physical systems. In: Machine Learning for the Internet of Things. Elsevier (2019)

    Google Scholar 

  5. Dey, P., Mehra, R., Kazi, F., Wagh, S., Singh, N.M.: Impact of topology on the propagation of cascading failure in power grid. IEEE Trans. Smart Grid 7(4), 1970–1978 (2016)

    Article  Google Scholar 

  6. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8(1), 40–48 (2012)

    Article  Google Scholar 

  7. Hartmann, T., Fouquet, F., Klein, J., Le Traon, Y., Pelov, A., Toutain, L., Ropitault, T.: Generating realistic smart grid communication topologies based on real-data. In: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 428–433. IEEE (2014)

    Google Scholar 

  8. Huang, Y., Li, B., Liu, Z., Li, J., Yiu, S.M., Baker, T., Gupta, B.B.: Thinoram: Towards practical oblivious data access in fog computing environment. IEEE Trans. Serv. Comput. 13, 602–612 (2019)

    Article  Google Scholar 

  9. Ke, S., Zhenxiang, H., Yijia, C.: Review on models of cascading failure in complex power grid. Power Syst. Technol. Beijing 29(13), 1 (2005)

    Google Scholar 

  10. Li, T., Li, J., Chen, X., Liu, Z., Lou, W., Hou, T.: NPMML: A framework for non-interactive privacy-preserving multi-party machine learning. IEEE Trans. Dependable Secure Comput. (2020). https://doi.org/10.1109/TDSC.2020.2971598

  11. Li, W., Bashan, A., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Cascading failures in interdependent lattice networks: The critical role of the length of dependency links. Phys. Rev. Lett. 108(22), 228702 (2012)

    Article  Google Scholar 

  12. Liu, Z., Li, B., Huang, Y., Li, J., Xiang, Y., Pedrycz, W.: Newmcos: Towards a practical multi-cloud oblivious storage scheme. IEEE Trans. Knowl. Data Eng. 32(4), 714–727 (2019)

    Article  Google Scholar 

  13. Manik, D., Rohden, M., Ronellenfitsch, H., Zhang, X., Hallerberg, S., Witthaut, D., Timme, M.: Network susceptibilities: Theory and applications. Phys. Rev. E 95(1), 012319 (2017)

    Article  Google Scholar 

  14. Newman, M.: Networks. Oxford University Press (2018)

    Google Scholar 

  15. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1–2), 63–79 (2008)

    Article  Google Scholar 

  16. Sun, K.: WAMS-based controlled system separation to mitigate cascading failures in smart grid. In: Stoustrup, J., Annaswamy, A., Chakrabortty, A., Qu, Z. (eds.) Smart Grid Control. Power Electronics and Power Systems. Springer, Cham (2019)

    Google Scholar 

  17. Toft, M.B., Schuitema, G., Thøgersen, J.: Responsible technology acceptance: Model development and application to consumer acceptance of smart grid technology. Appl. Energy 134, 392–400 (2014)

    Article  Google Scholar 

  18. Wang, T., Liang, Y., Yang, Y., Xu, G., Peng, H., Liu, A., Jia, W.: An intelligent edge-computing-based method to counter coupling problems in cyber-physical systems. IEEE Netw. 34(3), 16–22 (2020)

    Article  Google Scholar 

  19. Xu, G., Liu, J., Lu, Y., Zeng, X., Zhang, Y., Li, X.: A novel efficient maka protocol with desynchronization for anonymous roaming service in global mobility networks. J. Netw. Comput. Appl. 107, 83–92 (2018)

    Article  Google Scholar 

  20. Xu, G., Zhang, Y., Sangaiah, A.K., Li, X., Castiglione, A., Zheng, X.: CSP-E2: An abuse-free contract signing protocol with low-storage TTP for energy-efficient electronic transaction ecosystems. Inf. Sci. 476, 505–515 (2019)

    Article  Google Scholar 

  21. Zhu, Y., Yan, J., Tang, Y., Sun, Y.L., He, H.: Joint substation-transmission line vulnerability assessment against the smart grid. IEEE Trans. Inf. Forensics Secur. 10(5), 1010–1024 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant No.61902359, No.61672467 and No.61672468), in part by the Social Development Project of Zhejiang Provincial Public Technology Research (Grant No.2016C33168), in part by Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ19F030010), and in part by the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security (Grant No.AGK2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, H., Kan, Z., Zhao, D., Han, J., Hu, Z. (2020). Risk Assessment of Heterogeneous CPS Systems Under Different Proportions of Links. In: Xiang, Y., Liu, Z., Li, J. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2020. Communications in Computer and Information Science, vol 1298. Springer, Singapore. https://doi.org/10.1007/978-981-15-9031-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9031-3_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9030-6

  • Online ISBN: 978-981-15-9031-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics