Abstract
We present a machine learning based approach for automatically synthesizing a memristor crossbar design from the specification of a Boolean formula. In particular, our approach employs deep neural networks to explore the design space of crossbar circuits and conjecture the design of an approximately correct crossbar. Then, we employ simulated annealing to obtain the correct crossbar design from the approximately correct design. Our experimental investigations show that the deep learning system is able to prune the search space to less than \(0.0000011\%\) of the original search space with high probability; thereby, making it easier for the simulated annealing algorithm to identify a correct crossbar design. We automatically design an adder, subtractor, comparator, and parity circuit using this combination of deep learning and simulated annealing, and demonstrate their correctness using circuit simulations. We also compare our approach to vanilla simulated annealing without the deep learning component, and show that our approach needs only 6.08% to 69.22% of the number of circuit simulation queries required by simulated annealing alone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Blunsom, P., Cho, K., Dyer, C., Schütze, H.: From characters to understanding natural language (c2nlu): robust end-to-end deep learning for NLP (dagstuhl seminar 17042). In: Dagstuhl Reports, vol. 7, no. 1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Andersson, O., Wzorek, M., Doherty, P.: Deep learning quadcopter control via risk-aware active learning. In: AAAI, pp. 3812–3818 (2017)
Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37(4–5), 405–420 (2018)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Gibney, E.: Google ai algorithm masters ancient game of go. Nat. News 529(7587), 445 (2016)
Chakraborty, D., Jha, S.K.: Automated synthesis of compact crossbars for sneak-path based in-memory computing. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 770–775. IEEE (2017)
Thangkhiew, P.L., Zulehner, A., Wille, R., Datta, K., Sengupta, I.: An efficient memristor crossbar architecture for mapping Boolean functions using binary decision diagrams (BDD). Integration (2019). http://www.sciencedirect.com/science/article/pii/S0167926019301646
Xie, L.: Mosaic: an automated synthesis flow for Boolean logic based on memristor crossbar. In: Proceedings of the 24th Asia and South Pacific Design Automation Conference, ser. ASPDAC 19. New York, NY, USA: Association for Computing Machinery, pp. 432–437 (2019). https://doi.org/10.1145/3287624.3287702
Pannu, J.S., Raj, S., Fernandes, S.L., Jha, S.K., Chakraborty, D., Rafiq, S., Cady, N.: Data-driven approximate edge detection using flow-based computing on memristor crossbars. In: 2019 IEEE Albany Nanotechnology Symposium (ANS), Nov 2019, pp. 1–6
Falcini, F., Lami, G., Costanza, A.M.: Deep learning in automotive software. IEEE Softw. 3, 56–63 (2017)
Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Magic memristor-aided logic. IEEE Transa. Circuits Syst. II: Express Briefs 61(11), 895–899 (2014)
Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: Memristor-based material implication (imply) logic: design principles and methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(10), 2054–2066 (2014)
Lehtonen, E., Laiho, M.: Stateful implication logic with memristors. In: Proceedings of the 2009 IEEE/ACM International Symposium on Nanoscale Architectures, ser. NANOARCH ’09. Washington, DC, USA: IEEE Computer Society, pp. 33–36. https://doi.org/10.1109/NANOARCH.2009.5226356 (2009)
Prezioso, M., Riminucci, A., Graziosi, P., Bergenti, I., Rakshit, R., Cecchini, R., Vianelli, A., Borgatti, F., Haag, N., Willis, M., Drew, A.J., Gillin, W.P., Dediu, V.A.: A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 25(4), 534–538. https://doi.org/10.1002/adma.201202031
Haj-Ali, A., Ben-Hur, R., Wald, N., Kvatinsky, S.: Efficient algorithms for in-memory fixed point multiplication using magic. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)
Shirinzadeh, S., Drechsler, R., Logic synthesis for in-memory computing using resistive memories. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 375–380. IEEE (2018)
Vatwani, T., Dutt, A., Bhattacharjee, D., Chattopadhyay, A.: Floating point multiplication mapping on reram based in-memory computing architecture. In: 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), pp. 439–444. IEEE (2018)
Bhattacharjee, D., Devadoss, R., Chattopadhyay, A., Revamp: Reram based VLIW architecture for in-memory computing. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 782–787. IEEE (2017)
Reuben, J., Ben-Hur, R., Wald, N., Talati, N., Ali, A.H., Gaillardon, P.-E., Kvatinsky, S.: Memristive logic: a framework for evaluation and comparison. In: 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 1–8. IEEE (2017)
Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)
Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014)
Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61 (2015)
Schuller, I.K., Stevens, R., Pino, R., Pechan, M.: Neuromorphic computing-from materials research to systems architecture roundtable. Technical Report, USDOE Office of Science (SC)(United States) (2015)
Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B.H., Lee, B.-G.: Neuromorphic hardware system for visual pattern recognition with memristor array and cmos neuron. IEEE Trans. Ind. Electron. 62(4), 2410–2419 (2015)
Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2011)
Serrano-Gotarredona, T., Prodromakis, T., Linares-Barranco, B.: A proposal for hybrid memristor-cmos spiking neuromorphic learning systems. IEEE Circuits Syst. Mag. 13(2), 74–88 (2013)
Chakraborti, S., Chowdhary, P.V., Datta, K., Sengupta, I.: BDD based synthesis of Boolean functions using memristors. In: 2014 9th International Design & Test Symposium (IDT), vol. 00, Dec. 2014, pp. 136–141. https://doi.org/10.1109/IDT.2014.7038601
Hassen, A.U., Chakraborty, D., Jha, S.K.: Free binary decision diagram-based synthesis of compact crossbars for in-memory computing. IEEE Trans. Circuits Syst. II: Express Briefs 65(5), 622–626 (2018)
Alamgir, Z., Beckmann, K., Cady, N., Velasquez, A., Jha, S.K.: Flow-based computing on nanoscale crossbars: design and implementation of full adders. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1870–1873. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chakraborty, D. et al. (2021). Automated Synthesis of Memristor Crossbars Using Deep Neural Networks. In: Satapathy, S., Zhang, YD., Bhateja, V., Majhi, R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_32
Download citation
DOI: https://doi.org/10.1007/978-981-15-5679-1_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-5678-4
Online ISBN: 978-981-15-5679-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)