Abstract
Named Entity Recognition (NER) for open domain data is a critical task for the natural language process applications and attracts many research attention. However, the complexity of semantic dependencies and the sparsity of the context information make it difficult for identifying correct entities from the corpus. In addition, the lack of annotated training data makes impossible the prediction of fine-grained entity types for detected entities. To solve the above-mentioned problems in NER, we propose an extractor which takes both the near arguments and long dependencies of relations into consideration for the entities and relations mention discovery. We then employ distant-supervision methods to automatically label mention types of training data sets and a neural network model is proposed for learning the type classifier. Empirical studies on two real-world raw text corpus, NYT and YELP, demonstrate that our proposed NER approach outperforms the existing models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
These five labels are introduced in Stanford Dependency notations. http://nlp.stanford.edu/software/dependencies_manual.pdf.
References
Anand, A., Awekar, A.: Fine-grained entity type classification by jointly learning representations and label embeddings. In: Proceedings of EACL, pp. 797–807 (2017)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. Trans. Knowl. Discov. Data 1(1), 1–36 (2007)
Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD, pp. 1247–1250 (2008)
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795 (2013)
Chieu, H.L., Ng, H.T.: Named entity recognition: a maximum entropy approach using global information. In: Proceedings of COLING (2002)
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. JMLR 12, 2493–2537 (2011)
Durrett, G., Klein, D.: A joint model for entity analysis: coreference, typing, and linking. Trans. Assoc. Comput. Linguist. 2, 477–490 (2014)
Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of EMNLP, pp. 1535–1545 (2011)
Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of ACL (2005)
Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_5
Gregoric, A.Z., Bachrach, Y., Coope, S.: Named entity recognition with parallel recurrent neural networks. In: Proceedings of ACL, pp. 69–74 (2018)
Gupta, S., Manning, C.D.: Improved pattern learning for bootstrapped entity extraction. In: Proceedings of CoNLL, pp. 98–108 (2014)
Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of SIGIR, pp. 765–774 (2011)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of ICML, pp. 448–456 (2015)
Kate, R.J., Mooney, R.J.: Joint entity and relation extraction using card-pyramid parsing. In: Proceedings of CoNLL, pp. 203–212 (2010)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML, pp. 282–289 (2001)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of NAACL, pp. 260–270 (2016)
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of ICML, pp. 1188–1196 (2014)
Li, Q., Ji, H.: Incremental joint extraction of entity mentions and relations. In: Proceedings of ACL, pp. 402–412 (2014)
Lin, T., Mausam, Etzioni, O.: No noun phrase left behind: detecting and typing unlinkable entities. In: Proceedings of EMNLP-CoNLL, pp. 893–903 (2012)
Ling, X., Weld, D.S.: Fine-grained entity recognition. In: Proceedings of AAAI, pp. 94–100 (2012)
Moon, C., Jones, P., Samatova, N.F.: Learning entity type embeddings for knowledge graph completion. In: Proceedings of CIKM, pp. 2215–2218 (2017)
Neelakantan, A., Chang, M.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. In: Proceedings of NAACL-HLT, pp. 515–525 (2015)
Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Proceedings of ISWC, pp. 510–525 (2013)
Ren, X., El-Kishky, A., Wang, C., Tao, F., Voss, C.R., Han, J.: Clustype: effective entity recognition and typing by relation phrase-based clustering. In: Proceedings of SIGKDD, pp. 995–1004 (2015)
Ren, X., He, W., Huang, M.Q.L., Ji, H., Han, J.: AFET: automatic fine-grained entity typing by hierarchical partial-label embedding. In: Proceedings of EMNLP, pp. 1369–1378 (2016)
Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: Neural architectures for fine-grained entity type classification. In: Proceedings of EACL, pp. 1271–1280 (2017)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)
Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI, pp. 2659–2665 (2016)
Xu, M., Jiang, H., Watcharawittayakul, S.: A local detection approach for named entity recognition and mention detection. In: Proceedings of ACL, pp. 1237–1247 (2017)
Xu, P., Barbosa, D.: Neural fine-grained entity type classification with hierarchy-aware loss. In: Proceedings of NAACL, ACL, June 2018
Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of ACL, pp. 473–480 (2002)
Acknowledgments
This work is supported partly by the National Natural Science Foundation of China (No. 61772059, 61602023 and 61421003), by the Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC), by State Key Laboratory of Software Development Environment (No. SKLSDE-2018ZX-17), and by the Fundamental Research Funds for the Central Universities and the Beijing S&T Committee.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, J., Zhang, R., Deng, T., Huai, J. (2019). Named Entity Recognition for Open Domain Data Based on Distant Supervision. In: Zhu, X., Qin, B., Zhu, X., Liu, M., Qian, L. (eds) Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding. CCKS 2019. Communications in Computer and Information Science, vol 1134. Springer, Singapore. https://doi.org/10.1007/978-981-15-1956-7_17
Download citation
DOI: https://doi.org/10.1007/978-981-15-1956-7_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-1955-0
Online ISBN: 978-981-15-1956-7
eBook Packages: Computer ScienceComputer Science (R0)