Abstract
3D reconstruction of plants under outdoor conditions is a challenging task, for applications such as plant phenotyping which needs non-invasive methods. With the availability of new sensors and reconstructions techniques, 3D reconstruction is improving rapidly. However, sensors are still expensive for researchers. In this paper, we propose a cost-effective image-based 3D reconstruction approach which can be achieved by off-the-shelf cameras. This approach is based on the structure-from-motion method. We implemented this approach in MATLAB and Meshlab is used for further processing to achieve an exact 3D model. We also investigated the effect of different adverse outdoor scenarios which affect quality of 3D model such as movement of plants because of strong wind, drastic change in light condition while capturing the images. We have decreased the appropriate number of images needed to get precise 3D model. This method gives accurate results and it is a fast platform for non-invasive plant phenotyping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mishra, K.B., Mishra, A., Klem, K., Govindjee: Plant phenotyping: a perspective. Indian J. Plant Physiol. 21(4), 514–527 (2016)
Li, L., Zhang, Q., Huang, D.: A review of imaging techniques for plant phenotyping. Sensors 14(11), 20078–20111 (2014)
Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)
Kazmi, W., Foix, S., Alenyà, G., Andersen, H.J.: Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: analysis and comparison. ISPRS J. Photogramm. Remote Sens. 88, 128–146 (2014)
Guo, Q., et al.: Crop 3D—a LiDAR based platform for 3D high-throughput crop phenotyping. Sci. China Life Sci. 61(3), 328–339 (2018)
Jebara, T., Azarbayejani, A., Pentland, A.: 3D structure from 2D motion. IEEE Signal Process. Mag. 16(3), 66–84 (1999)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)
Cremers, D., Kolev, K.: Multiview stereo and silhouette consistency via convex functionals over convex domains. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1161–1174 (2011)
Paturkar, A., Gupta, G.S., Bailey, D.: Overview of image-based 3D vision systems for agricultural applications. In: 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6, December 2017
Kaminuma, E., et al.: Automatic quantification of morphological traits via three-dimensional measurement of Arabidopsis. Plant J. 38(2), 358–365 (2004)
Paulus, S., Dupuis, J., Riedel, S., Kuhlmann, H.: Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping. Sensors 14(7), 12670–12686 (2014)
Baumberg, A., Lyons, A., Taylor, R.: 3D S.O.M.—a commercial software solution to 3D scanning. Graph. Models 67(6), 476–495 (2005)
Chéné, Y., et al.: On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82, 122–127 (2012)
Ivanov, N., Boissard, P., Chapron, M., Andrieu, B.: Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric. For. Meteorol. 75(1), 85–102 (1995)
Takizawa, H., Yamamoto, S., Ezaki, N., Mizuno, S.: Plant recognition by integrating color and range data obtained through stereo vision. J. Adv. Comput. Intell. Intell. Inform. 9(6), 630–636 (2005)
Jay, S., Rabatel, G., Hadoux, X., Moura, D., Gorretta, N.: In-field crop row phenotyping from 3D modeling performed using structure from motion. Comput. Electron. Agric. 110, 70–77 (2015)
Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: Image-based plant modeling. ACM Trans. Graph. 25(3), 599–604 (2006)
Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26(3), 87 (2007)
Paproki, A., Sirault, X., Berry, S., Furbank, R., Fripp, J.: A novel mesh processing based technique for 3D plant analysis. BMC Plant Biol. 12(1), 63 (2012)
Meyer, G., Camargo Neto, J.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63, 282–293 (2008)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics Association (2008)
Liu, S.-X., An, P., Zhang, Z.-Y., Zhang, Q., Shen, L.-Q., Jiang, G.-Y.: On the relationship between multi-view data capturing and quality of rendered virtual view. Imaging Sci. J. 57(5), 250–259 (2009)
Ni, Z., Burks, T., Lee, W.: 3D reconstruction of plant/tree canopy using monocular and binocular vision. J. Imaging 2(4), 28 (2016)
Pound, M.P., French, A.P., Murchie, E.H., Pridmore, T.P.: Automated recovery of three-dimensional models of plant shoots from multiple color images. Plant Physiol. 166(4), 1688–1698 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Paturkar, A., Gupta, G.S., Bailey, D. (2019). 3D Reconstruction of Plants Under Outdoor Conditions Using Image-Based Computer Vision. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1037. Springer, Singapore. https://doi.org/10.1007/978-981-13-9187-3_25
Download citation
DOI: https://doi.org/10.1007/978-981-13-9187-3_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9186-6
Online ISBN: 978-981-13-9187-3
eBook Packages: Computer ScienceComputer Science (R0)