Ranking of Cancer Mediating Genes: A Novel Approach Using Genetic Algorithm in DNA Microarray Gene Expression Dataset | SpringerLink
Skip to main content

Ranking of Cancer Mediating Genes: A Novel Approach Using Genetic Algorithm in DNA Microarray Gene Expression Dataset

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 906))

Included in the following conference series:

Abstract

Genes need to be investigated either in Gene Interaction Network or in a DNA microarray gene expression data to understand the role they play in complex diseases like cancer. The prioritized genes can help us to know the molecular mechanism, as well as to discover the promising candidates of cancer. Several gene ranking algorithms already have been proposed that produces the top ranked genes according to their importance with respect to a particular disease. In this work, we have developed one Genetic Algorithm (GA) based algorithm, MicroarrayGA, to rank the genes responsible for a particular cancer to occur. The whole research works on six datasets like Colorectal Cancer, Diffuse Large B-Cell Lymphoma, Pediatric Immune Thrombocytopenia (ITP), Small Cell Lung Cancer (SCLC), Breast Cancer and Prostate Cancer, publicly available from NCBI (National Center for Biotechnology Information) online repository. We have validated the outcome of the proposed algorithm by classification step using Support Vector Machine (SVM) classifier and we have also compared the results of MicroarrayGA with three existing methods on the basis of percentage of accuracy, precision, recall, F1-Score and G-Mean metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Defining Cancer: National Cancer Institute, June 2014

    Google Scholar 

  2. Zhang, C., Lu, X., Zhang, X.: Significance of gene ranking for classification of microarray samples. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 3(3), 312–320 (2006)

    Article  Google Scholar 

  3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1975)

    Google Scholar 

  5. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of 5th Annual Workshop on Computational Learning Theory, pp. 144–152. ACM Press (1992)

    Google Scholar 

  6. Zisserman, A.: The SVM Classifier. Lecture Notes (2015)

    Google Scholar 

  7. Wang, Y., et al.: Gene selection from microarray data for cancer classification—a machine learning approach. Comput. Biol. Chem. 29(1), 37–46 (2005)

    Article  MathSciNet  Google Scholar 

  8. Yoo, C.K., Leeb, I.B., Vanrolleghema, P.A.: Interpreting patterns and analysis of acute leukemia gene expression data by multivariate fuzzy statistical analysis. In: Proceedings of 14th European Symposium on Computer Aided Process Engineering. ESCAPE-14, vol. 29, no. 6, pp. 1345–1356 (2005)

    Article  Google Scholar 

  9. Peterson, L.E., Coleman, M.A.: Comparison of gene identification based on artificial neural network pre-processing with k-means cluster and principal component analysis. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 267–276. Springer, Heidelberg (2006). https://doi.org/10.1007/11676935_33

    Chapter  Google Scholar 

  10. Liao, C., Li, S., Luo, Z.: Gene selection using Wilcoxon rank sum test and support vector machine for cancer classification. In: Wang, Y., Cheung, Y.-M., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 57–66. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74377-4_7

    Chapter  Google Scholar 

  11. West, M., Blanchette, C., Dressman, H., et al.: Predicting the clinical status of human breast cancer using gene expression profiles. Proc. Natl. Acad. Sci. 98, 11462–11467 (2001)

    Article  Google Scholar 

  12. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(1999), 531–537 (1999)

    Article  Google Scholar 

  13. Huerta, E.B., Duval, B., Hao, J.-K.: A Hybrid GA/SVM approach for gene selection and classification of microarray data. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 34–44. Springer, Heidelberg (2006). https://doi.org/10.1007/11732242_4

    Chapter  Google Scholar 

  14. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999)

    Article  Google Scholar 

  15. Mondal, K.C., Mukhopadhyay, A., Maulik, U., Bandhyapadhyay, S., Pasquier, N.: MOSCFRA: a multi-objective genetic approach for simultaneous clustering and gene ranking. In: Rizzo, R., Lisboa, P.J.G. (eds.) CIBB 2010. LNCS, vol. 6685, pp. 174–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21946-7_14

    Chapter  Google Scholar 

  16. Luque-Baena, R.M., Urda, D., Subirats, J.L., Franco, L., Jerez, J.M.: Analysis of cancer microarray data using constructive neural networks and genetic algorithms. In: 1st International Work-Conference on Bioinformatics and Biomedical Engineering-IWBBIO, Granada, Spain (2013)

    Google Scholar 

  17. Parekh, R., Yang, J., Honavar, V.: Constructive neural-network learning algorithms for pattern classification. IEEE Trans. Neural Netw. 11(2), 436–451 (2000)

    Article  Google Scholar 

  18. Subirats, J.L., Franco, L., Jerez, J.M.: C-Mantec: a novel constructive neural network algorithm incorporating competition between neurons. Neural Netw. 26, 130–140 (2012)

    Article  Google Scholar 

  19. Ghosh, A., Dhara, B.C., De, R.K.: Selection of genes mediating certain cancers, using neuro-fuzzy approach. Neurocomputing 133, 122–140 (2014)

    Article  Google Scholar 

  20. Mandal, M., Mukhopadhyay, A.: A novel PSO-based graph-theoretic approach for identifying most relevant and non-redundant gene markers from gene expression data. Int. J. Parallel Emerg. Distrib. Syst. 30(3), 175–192 (2015)

    Article  Google Scholar 

  21. Soufan, O., Kleftogiannis, D., Kalnis, P., Bajic, V.B.: DWFS: a wrapper feature selection tool based on a parallel genetic algorithm. PLoS One (2015). https://doi.org/10.1371/journal.pone.0117988

    Article  Google Scholar 

  22. Demidenko, E.: Microarray enriched gene rank. BioData Min. 8, 2 (2015). https://doi.org/10.1186/s13040-014-0033-1

    Article  Google Scholar 

  23. Ghosh, A., De, R.K.: Identification of certain cancer mediating genes using Gaussian Fuzzy cluster validity index (GFI). J. Biosci. 40, 741–754 (2015)

    Article  Google Scholar 

  24. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search-engine technology for the analysis of microarray experiments. BMC Bioinform. 6(2015), 233–247 (2015)

    Google Scholar 

  25. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab, Stanford (1999)

    Google Scholar 

  26. Iatan, I.F.: The fisher’s linear discriminant. In: Borgelt, C., et al. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis, vol. 77, pp. 345–352. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14746-3_43

    Chapter  Google Scholar 

  27. Khamas, A., Ishikawa, T., Shimokawa, K., Mogushi, K., et al.: Screening for epigenetically masked genes in colorectal cancer using 5-Aza-2′-deoxycytidine, microarray and gene expression profile. Cancer Genom. Proteom. 9(2), 67–75 (2012)

    Google Scholar 

  28. Sato, T., Kaneda, A., Tsuji, S., Isagawa, T., et al.: PRC2 over-expression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Sci. Rep. 3, 1911 (2013)

    Article  Google Scholar 

  29. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2002), 203–209 (2002)

    Article  Google Scholar 

  30. Hans, C.P., Weisenburger, D.D., Greiner, T.C., Gascoyne, R.D., Delabie, J., et al.: Confirmation of the molecular classification of diffuse large B-cell lymphoma by immune histo-chemistry using a tissue microarray. Blood 103(2004), 275–282 (2004)

    Article  Google Scholar 

  31. Shad, A.T., Gonzalez, C.E., Sandler, S.G.: Treatment of immune thrombocytopenic purpura in children: current concepts. Paediatr. Drugs 7(5), 325–336 (2005)

    Article  Google Scholar 

  32. Seal, D.B., Saha, S., Mukherjee, P., Chatterjee, M., Mukherjee, A., Dey, K.N.: Gene ranking: an entropy & decision tree based approach. In: IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York City, NY, USA, pp. 1–5 (2016). https://doi.org/10.1109/UEMCON.2016.7777837

  33. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, S., Das, P., Ghosh, A., Dey, K.N. (2018). Ranking of Cancer Mediating Genes: A Novel Approach Using Genetic Algorithm in DNA Microarray Gene Expression Dataset. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 906. Springer, Singapore. https://doi.org/10.1007/978-981-13-1813-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1813-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1812-2

  • Online ISBN: 978-981-13-1813-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics