Yagi-Uda Antenna Design Using Differential Evolution | SpringerLink
Skip to main content

Yagi-Uda Antenna Design Using Differential Evolution

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 874))

Included in the following conference series:

  • 724 Accesses

Abstract

Differential evolution (DE) is an efficient optimization technique, which has been applied to solve various engineering optimization problems. In this paper, DE is used to optimize the element spacing and lengths of Yagi-Uda antennas. An internal system with interactive simulation is developed based on C++ and CST Microwave Studio. To verify the performance our approach, the Yagi-Uda antenna for 60 GHz communications is designed in the experiments. Simulation results show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sotiroudis, S.P., Goudos, S.K., Gotsis, K.A., Siakavara, K., Sahalos, J.N.: Application of a composite differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile communication systems. IEEE Antennas Wirel. Propag. Lett. 12, 364–367 (2013)

    Article  Google Scholar 

  2. Goudos, S.K., Gotsis, K.A., Siakavara, K., Vafiadis, E.E., Sahalos, J.N.: A multi-objective approach to subarrayed linear antenna arrays design based on memetic differential evolution. IEEE Trans. Antennas Propag. 61(6), 3042–3052 (2013)

    Article  MathSciNet  Google Scholar 

  3. Pantoja, M.F., Bretones, A.R., Ruiz, F.G., Garcia, S.G., Martin, R.G.: Particle-swarm optimization in antenna design: optimization of log-periodic dipole arrays. IEEE Antennas Propag. Mag. 49(4), 34–47 (2007)

    Article  Google Scholar 

  4. Bozza, G., Pastorino, M., Raffetto, M., Randazzo, A.: Synthesis of metamaterial coatings for cylindrical structures by an ant-colony optimization algorithm. In: Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques, pp. 143–147 (2006)

    Google Scholar 

  5. Chen, P.Y., Chen, C.H., Wang, H., Tsai, J.H., Ni, W.X.: Synthesis design of artificial magnetic metamaterials using a genetic algorithm. Opt. Express 16(17), 12806–12818 (2008)

    Article  Google Scholar 

  6. Di Cesare, N., Chamoret, D., Domaszewski, M.: Optimum topological design of negative permeability dielectric metamaterial using a new binary particle swarm algorithm. Adv. Eng. Softw. 101, 149–159 (2016)

    Article  Google Scholar 

  7. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  8. Zhao, J., Lv, L., Wang, H., Sun, H., Wu, R., Nie, J., Xie, Z.: Particle swarm optimization based on vector Gaussian learning. KSII Trans. Internet Inf. Syst. 11(4), 2038–2057 (2017)

    Google Scholar 

  9. Wang, H., Sun, H., Li, C.H., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  10. Sun, H., Wang, K., Zhao, J., Yu, X.: Artificial bee colony algorithm with improved special centre. Int. J. Comput. Sci. Math. 7(6), 548–553 (2016)

    Article  MathSciNet  Google Scholar 

  11. Yu, G.: A new multi-population-based artificial bee colony for numerical optimization. Int. J. Comput. Sci. Math. 7(6), 509–515 (2016)

    Article  MathSciNet  Google Scholar 

  12. Lv, L., Wu, L.Y., Zhao, J., Wang, H., Wu, R.X., Fan, T.H., Hu, M., Xie, Z.F.: Improved multi-strategy artificial bee colony algorithm. Int. J. Comput. Sci. Math. 7(5), 467–475 (2016)

    Article  MathSciNet  Google Scholar 

  13. Wang, H., Wu, Z.J., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.S.: Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 279, 587–603 (2014)

    Article  MathSciNet  Google Scholar 

  14. Zhou, X.Y., Wang, H., Wang, M.W., Wan, J.Y.: Enhancing the modified artificial bee colony algorithm with neighborhood search. Soft. Comput. 21(10), 2733–2743 (2017)

    Article  Google Scholar 

  15. Cui, Z., Sun, B., Wang, G., Xue, Y., Chen, J.: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J. Parallel Distrib. Comput. 103, 42–52 (2017)

    Article  Google Scholar 

  16. Zhang, M., Wang, H., Cui, Z., Chen, J.: Hybrid multi-objective cuckoo search with dynamical local search. Memet. Comput. (2017, in press). https://doi.org/10.1007/s12293-017-0237-2

  17. Yu, G.: An improved firefly algorithm based on probabilistic attraction. Int. J. Comput. Sci. Math. 7(6), 530–536 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, H., Cui, Z., Sun, H., Rahnamayan, S., Yang, X.S.: Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism. Soft. Comput. 21(18), 5325–5339 (2017)

    Article  Google Scholar 

  19. Lv, L., Zhao, J.: The firefly algorithm with Gaussian disturbance and local search. J. Signal Process. Syst. (2017, in press). https://doi.org/10.1007/s11265-017-1278-y

  20. Wang, H., Wang, W., Sun, H., Rahnamayan, S.: Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 8(1), 33–41 (2016)

    Article  Google Scholar 

  21. Kaur, M., Sharma, P.K.: On solving partition driven standard cell placement problem using firefly-based metaheuristic approach. Int. J. Bio-Inspired Comput. 9(2), 121–127 (2017)

    Article  Google Scholar 

  22. Wang, H., Wang, W.J., Zhou, X.Y., Sun, H., Zhao, J., Yu, X., Cui, Z.: Firefly algorithm with neighborhood attraction. Inf. Sci. 382–383, 374–387 (2017)

    Article  Google Scholar 

  23. Wang, H., Zhou, X.Y., Sun, H., Yu, X., Zhao, J., Zhang, H., Cui, L.Z.: Firefly algorithm with adaptive control parameters. Soft. Comput. 21(17), 5091–5102 (2017)

    Article  Google Scholar 

  24. Cai, X., Gao, X.Z., Xue, Y.: Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 8(4), 205–214 (2016)

    Article  Google Scholar 

  25. Bantin, C., Balmain, K.: Study of compressed log-periodic dipole antennas. IEEE Trans. Antennas Propag. 18(2), 195–203 (1970)

    Article  Google Scholar 

  26. Li, X., Zhang, X., Hei, Y.: Antenna Gain Imbalance detection method using Particle Swarm algorithm for MIMO systems. In: International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6, October 2012

    Google Scholar 

  27. Pu, T.L., Huang, K.M., Wang, B., Yang, Y.: Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens. J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010)

    Article  Google Scholar 

  28. Wang, H., Rahnamayan, S., Sun, H., Omran, M.G.H.: Gaussian bare-bones differential evolution. IEEE Trans. Cybern. 43(2), 634–647 (2013)

    Article  Google Scholar 

  29. Zhou, X.Y., Wu, Z.J., Wang, H., Rahnamayan, S.: Enhancing differential evolution with role assignment scheme. Soft. Comput. 18(11), 2209–2225 (2014)

    Article  Google Scholar 

  30. Wang, H., Rahnamayan, S., Wu, Z.J.: Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. J. Parallel Distrib. Comput. 73(1), 62–73 (2013)

    Article  Google Scholar 

  31. Wang, H., Wu, Z.J., Rahnamayan, S.: Enhanced opposition-based differential evolution for high-dimensional optimization problems. Soft. Comput. 15(11), 2127–2140 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Technology Research Project of Jiangxi Provincial Education Department (Grant No. GJJ151115), the Distinguished Young Talents Plan of Jiangxi Province (Grant No. 20171BCB23075), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Wang, H., Wang, C. (2018). Yagi-Uda Antenna Design Using Differential Evolution. In: Li, K., Li, W., Chen, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2017. Communications in Computer and Information Science, vol 874. Springer, Singapore. https://doi.org/10.1007/978-981-13-1651-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1651-7_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1650-0

  • Online ISBN: 978-981-13-1651-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics