Abstract
Differential evolution (DE) is an efficient optimization technique, which has been applied to solve various engineering optimization problems. In this paper, DE is used to optimize the element spacing and lengths of Yagi-Uda antennas. An internal system with interactive simulation is developed based on C++ and CST Microwave Studio. To verify the performance our approach, the Yagi-Uda antenna for 60 GHz communications is designed in the experiments. Simulation results show the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sotiroudis, S.P., Goudos, S.K., Gotsis, K.A., Siakavara, K., Sahalos, J.N.: Application of a composite differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile communication systems. IEEE Antennas Wirel. Propag. Lett. 12, 364–367 (2013)
Goudos, S.K., Gotsis, K.A., Siakavara, K., Vafiadis, E.E., Sahalos, J.N.: A multi-objective approach to subarrayed linear antenna arrays design based on memetic differential evolution. IEEE Trans. Antennas Propag. 61(6), 3042–3052 (2013)
Pantoja, M.F., Bretones, A.R., Ruiz, F.G., Garcia, S.G., Martin, R.G.: Particle-swarm optimization in antenna design: optimization of log-periodic dipole arrays. IEEE Antennas Propag. Mag. 49(4), 34–47 (2007)
Bozza, G., Pastorino, M., Raffetto, M., Randazzo, A.: Synthesis of metamaterial coatings for cylindrical structures by an ant-colony optimization algorithm. In: Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques, pp. 143–147 (2006)
Chen, P.Y., Chen, C.H., Wang, H., Tsai, J.H., Ni, W.X.: Synthesis design of artificial magnetic metamaterials using a genetic algorithm. Opt. Express 16(17), 12806–12818 (2008)
Di Cesare, N., Chamoret, D., Domaszewski, M.: Optimum topological design of negative permeability dielectric metamaterial using a new binary particle swarm algorithm. Adv. Eng. Softw. 101, 149–159 (2016)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Zhao, J., Lv, L., Wang, H., Sun, H., Wu, R., Nie, J., Xie, Z.: Particle swarm optimization based on vector Gaussian learning. KSII Trans. Internet Inf. Syst. 11(4), 2038–2057 (2017)
Wang, H., Sun, H., Li, C.H., Rahnamayan, S., Pan, J.S.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)
Sun, H., Wang, K., Zhao, J., Yu, X.: Artificial bee colony algorithm with improved special centre. Int. J. Comput. Sci. Math. 7(6), 548–553 (2016)
Yu, G.: A new multi-population-based artificial bee colony for numerical optimization. Int. J. Comput. Sci. Math. 7(6), 509–515 (2016)
Lv, L., Wu, L.Y., Zhao, J., Wang, H., Wu, R.X., Fan, T.H., Hu, M., Xie, Z.F.: Improved multi-strategy artificial bee colony algorithm. Int. J. Comput. Sci. Math. 7(5), 467–475 (2016)
Wang, H., Wu, Z.J., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.S.: Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 279, 587–603 (2014)
Zhou, X.Y., Wang, H., Wang, M.W., Wan, J.Y.: Enhancing the modified artificial bee colony algorithm with neighborhood search. Soft. Comput. 21(10), 2733–2743 (2017)
Cui, Z., Sun, B., Wang, G., Xue, Y., Chen, J.: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J. Parallel Distrib. Comput. 103, 42–52 (2017)
Zhang, M., Wang, H., Cui, Z., Chen, J.: Hybrid multi-objective cuckoo search with dynamical local search. Memet. Comput. (2017, in press). https://doi.org/10.1007/s12293-017-0237-2
Yu, G.: An improved firefly algorithm based on probabilistic attraction. Int. J. Comput. Sci. Math. 7(6), 530–536 (2016)
Wang, H., Cui, Z., Sun, H., Rahnamayan, S., Yang, X.S.: Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism. Soft. Comput. 21(18), 5325–5339 (2017)
Lv, L., Zhao, J.: The firefly algorithm with Gaussian disturbance and local search. J. Signal Process. Syst. (2017, in press). https://doi.org/10.1007/s11265-017-1278-y
Wang, H., Wang, W., Sun, H., Rahnamayan, S.: Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 8(1), 33–41 (2016)
Kaur, M., Sharma, P.K.: On solving partition driven standard cell placement problem using firefly-based metaheuristic approach. Int. J. Bio-Inspired Comput. 9(2), 121–127 (2017)
Wang, H., Wang, W.J., Zhou, X.Y., Sun, H., Zhao, J., Yu, X., Cui, Z.: Firefly algorithm with neighborhood attraction. Inf. Sci. 382–383, 374–387 (2017)
Wang, H., Zhou, X.Y., Sun, H., Yu, X., Zhao, J., Zhang, H., Cui, L.Z.: Firefly algorithm with adaptive control parameters. Soft. Comput. 21(17), 5091–5102 (2017)
Cai, X., Gao, X.Z., Xue, Y.: Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 8(4), 205–214 (2016)
Bantin, C., Balmain, K.: Study of compressed log-periodic dipole antennas. IEEE Trans. Antennas Propag. 18(2), 195–203 (1970)
Li, X., Zhang, X., Hei, Y.: Antenna Gain Imbalance detection method using Particle Swarm algorithm for MIMO systems. In: International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6, October 2012
Pu, T.L., Huang, K.M., Wang, B., Yang, Y.: Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens. J. Electromagn. Waves Appl. 24(8–9), 1207–1217 (2010)
Wang, H., Rahnamayan, S., Sun, H., Omran, M.G.H.: Gaussian bare-bones differential evolution. IEEE Trans. Cybern. 43(2), 634–647 (2013)
Zhou, X.Y., Wu, Z.J., Wang, H., Rahnamayan, S.: Enhancing differential evolution with role assignment scheme. Soft. Comput. 18(11), 2209–2225 (2014)
Wang, H., Rahnamayan, S., Wu, Z.J.: Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. J. Parallel Distrib. Comput. 73(1), 62–73 (2013)
Wang, H., Wu, Z.J., Rahnamayan, S.: Enhanced opposition-based differential evolution for high-dimensional optimization problems. Soft. Comput. 15(11), 2127–2140 (2011)
Acknowledgement
This work was supported by the Science and Technology Research Project of Jiangxi Provincial Education Department (Grant No. GJJ151115), the Distinguished Young Talents Plan of Jiangxi Province (Grant No. 20171BCB23075), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202035).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, H., Wang, H., Wang, C. (2018). Yagi-Uda Antenna Design Using Differential Evolution. In: Li, K., Li, W., Chen, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2017. Communications in Computer and Information Science, vol 874. Springer, Singapore. https://doi.org/10.1007/978-981-13-1651-7_38
Download citation
DOI: https://doi.org/10.1007/978-981-13-1651-7_38
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1650-0
Online ISBN: 978-981-13-1651-7
eBook Packages: Computer ScienceComputer Science (R0)