Energy Efficiency Optimization in SFR-Based Power Telecommunication Networks | SpringerLink
Skip to main content

Energy Efficiency Optimization in SFR-Based Power Telecommunication Networks

  • Conference paper
  • First Online:
Geo-Spatial Knowledge and Intelligence (GSKI 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 848))

Included in the following conference series:

  • 1155 Accesses

Abstract

Soft Frequency Reuse (SFR) can coordinate the inter-cell interference (ICI) by control the carriers and transmitting power. It will be used in the 5G. With the energy consumption increasing in the wireless network, the energy efficiency is an important index to evaluate the network performance in 5G. In this paper, we investigates the global energy efficiency optimization problem in SFR-based cellular networks. We formulate the global energy efficiency optimization as a fractional program model. It is very hard to solve directly the optimization model. To find the optimal solution of this model, we utilize the Lagrange function and KKT condition to attain the optimal transmitting power allocations. Then, we utilize the simulated annealing method to find the transmitting power allocations and sub-channel assignments. Finally, we make a numerical simulation to validate the algorithm proposed. The simulation results show that our algorithm proposed is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, G.: Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wirel. Commun. 22(2), 145–151 (2015)

    Article  Google Scholar 

  2. Yang, C.: An efficient hybrid spectrum access algorithm in OFDM-based wideband cognitive radio networks. Neurocomputing 125, 33–40 (2014)

    Article  Google Scholar 

  3. Elayoubil, S.E.: Performance evaluation of frequency planning schemes in OFDMA-based networks. IEEE Trans. Wirel. Commun. 7(5), 1623–1633 (2008)

    Article  Google Scholar 

  4. R1-050841, Huawei, Further Analysis of Soft Frequency Reuse Scheme, 3GPP TSG RAN WG1#42, 29 August–2 September (2005)

    Google Scholar 

  5. Ren, Z.: Energy-efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints. IEEE Trans. Veh. Technol. 63(5), 2139–2150 (2014)

    Article  Google Scholar 

  6. Al-Zahrani, A.Y., Yu, F.R.: An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory. IEEE Trans. Veh. Technol. 65(7), 5384–5396 (2016)

    Article  Google Scholar 

  7. Yang, K.: Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Trans. Veh. Technol. 66(6), 5086–5098 (2016)

    Article  Google Scholar 

  8. Wang, X.: Energy-efficient resource allocation in coordinated downlink multicell OFDMA systems. IEEE Trans. Veh. Technol. 65(3), 1395–1408 (2016)

    Article  Google Scholar 

  9. Mahmud, A.: On the energy efficiency of fractional frequency reuse techniques. In: IEEE Wireless Communications and Networking Conference, pp. 2348–2353 (2014)

    Google Scholar 

  10. Xie, B.: Joint spectral efficiency and energy efficiency in FFR based wireless heterogeneous networks. IEEE Trans. Veh. Technol. PP(99), 1 (2017)

    Article  Google Scholar 

  11. Qi, Z.:Analytical evaluation of throughput and power efficiency using fractional frequency reuse. In: IEEE Vehicular Technology Conference, pp. 1–5. IEEE (2016)

    Google Scholar 

  12. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  13. Ng, D.W.K.: Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans. Wirel. Commun. 11(10), 3618–3631 (2012)

    Article  Google Scholar 

  14. He, S.: Coordinated beam-forming for energy efficient transmission in multicell multiuser systems. IEEE Trans. Commun. 61(12), 4961–4971 (2013)

    Article  Google Scholar 

  15. Bu, S.: Interference-aware energy-efficient resource allocation for OFDMA-based heterogeneous networks with incomplete channel state information. IEEE Trans. Veh. Technol. 64(3), 1036–1050 (2015)

    Article  Google Scholar 

  16. Wang, Y.: Energy-efficient resource allocation for different QoS requirements in heterogeneous networks. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE (2016)

    Google Scholar 

  17. Masoudi, M.: Energy efficient resource allocation in two-tier OFDMA networks with QoS guarantees. Wirel. Netw. 1–15 (2017)

    Google Scholar 

  18. Danish, E.: Content-aware resource allocation in OFDM systems for energy-efficient video transmission. IEEE Trans. Consum. Electron. 60(3), 320–328 (2014)

    Article  Google Scholar 

  19. Xu, L.: Energy-efficient resource allocation for multiuser OFDMA system based on hybrid genetic simulated annealing. Soft Comput. 21(14), 1–8 (2016)

    Google Scholar 

  20. Tang, M., Xin, Y.: Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Comput. Netw. 100, 1–11 (2016)

    Article  Google Scholar 

  21. Feng, D.: A survey of energy-efficient wireless communications. IEEE Commun. Surv. Tutor. 15(1), 167–178 (2013)

    Article  Google Scholar 

  22. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  23. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    Article  Google Scholar 

  24. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)

    Article  Google Scholar 

  25. Jiang, D., Wang, Y., Han, Y., et al.: Maximum connectivity-based channel allocation algorithm in cognitive wireless networks for medical applications. Neurocomputing 220(2017), 41–51 (2017)

    Article  Google Scholar 

  26. Jiang, D., Xu, Z., Li, W., et al.: An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. J. Commun. Netw. 18(5), 713–724 (2016)

    Article  Google Scholar 

  27. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  28. Jiang, D., Nie, L., Lv, Z., et al.: Spatio-temporal Kronecker compressive sensing for traffic matrix recovery. IEEE Access 4, 3046–3053 (2016)

    Article  Google Scholar 

  29. Jiang, D., Liu, J., Lv, Z., et al.: A robust energy-efficient routing algorithm to cloud computing networks for learning. J. Intell. Fuzzy Syst. 31(5), 2483–2495 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H., Zhao, S., Jiang, R., Huang, H., Jiang, X., Wang, L. (2018). Energy Efficiency Optimization in SFR-Based Power Telecommunication Networks. In: Yuan, H., Geng, J., Liu, C., Bian, F., Surapunt, T. (eds) Geo-Spatial Knowledge and Intelligence. GSKI 2017. Communications in Computer and Information Science, vol 848. Springer, Singapore. https://doi.org/10.1007/978-981-13-0893-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0893-2_64

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0892-5

  • Online ISBN: 978-981-13-0893-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics