An Improved Naive Bayes Classifier-Based Noise Detection Technique for Classifying User Phone Call Behavior | SpringerLink
Skip to main content

An Improved Naive Bayes Classifier-Based Noise Detection Technique for Classifying User Phone Call Behavior

  • Conference paper
  • First Online:
Data Mining (AusDM 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 845))

Included in the following conference series:

Abstract

The presence of noisy instances in mobile phone data is a fundamental issue for classifying user phone call behavior (i.e., accept, reject, missed and outgoing), with many potential negative consequences. The classification accuracy may decrease and the complexity of the classifiers may increase due to the number of redundant training samples. To detect such noisy instances from a training dataset, researchers use naive Bayes classifier (NBC) as it identifies misclassified instances by taking into account independence assumption and conditional probabilities of the attributes. However, some of these misclassified instances might indicate usages behavioral patterns of individual mobile phone users. Existing naive Bayes classifier based noise detection techniques have not considered this issue and, thus, are lacking in classification accuracy. In this paper, we propose an improved noise detection technique based on naive Bayes classifier for effectively classifying users’ phone call behaviors. In order to improve the classification accuracy, we effectively identify noisy instances from the training dataset by analyzing the behavioral patterns of individuals. We dynamically determine a noise threshold according to individual’s unique behavioral patterns by using both the naive Bayes classifier and Laplace estimator. We use this noise threshold to identify noisy instances. To measure the effectiveness of our technique in classifying user phone call behavior, we employ the most popular classification algorithm (e.g., decision tree). Experimental results on the real phone call log dataset show that our proposed technique more accurately identifies the noisy instances from the training datasets that leads to better classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cestnik, B., et al.: Estimating probabilities: a crucial task in machine learning. In: ECAI, vol. 90, pp. 147–149 (1990)

    Google Scholar 

  2. Chen, J., Huang, H., Tian, S., Qu, Y.: Feature selection for text classification with Naïve Bayes. Expert Syst. Appl. 36(3), 5432–5435 (2009)

    Article  Google Scholar 

  3. Daza, L., Acuna, E.: An algorithm for detecting noise on supervised classification. In: Proceedings of WCECS 2007, the 1st World Conference on Engineering and Computer Science, pp. 701–706 (2007)

    Google Scholar 

  4. Eagle, N., Pentland, A., Lazer, D.: Infering social network structure using mobile phone data. Proc. Natl. Acad. Sci. (2006)

    Google Scholar 

  5. Farid, D.M., Zhang, L., Rahman, C.M., Hossain, M.A., Strachan, R.: Hybrid decision tree and Naïve Bayes classifiers for multi-class classification tasks. Expert Syst. Appl. 41(4), 1937–1946 (2014)

    Article  Google Scholar 

  6. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  Google Scholar 

  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  8. Halvey, M., Keane, M.T., Smyth, B.: Time based segmentation of log data for user navigation prediction in personalization. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 636–640. IEEE Computer Society (2005)

    Google Scholar 

  9. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  10. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  11. Mehrotra, A., Hendley, R., Musolesi, M.: PrefMiner: mining user’s preferences for intelligent mobile notification management. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1223–1234. ACM (2016)

    Google Scholar 

  12. Ozer, M., Keles, I., Toroslu, H., Karagoz, P., Davulcu, H.: Predicting the location and time of mobile phone users by using sequential pattern mining techniques. Comput. J. 59(6), 908–922 (2016)

    Article  Google Scholar 

  13. Pejovic, V., Musolesi, M.: InterruptMe: designing intelligent prompting mechanisms for pervasive applications. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 897–908. ACM (2014)

    Google Scholar 

  14. Phithakkitnukoon, S., Dantu, R., Claxton, R., Eagle, N.: Behavior-based adaptive call predictor. ACM Trans. Auton. Adapt. Syst. (TAAS) 6(3), 21 (2011)

    Google Scholar 

  15. Ross Quinlan, J.: C4.5: programs for machine learning. Mach. Learn. (1993)

    Google Scholar 

  16. Sarker, I.H., Colman, A., Kabir, M.A., Han, J.: Behavior-oriented time segmentation for mining individualized rules of mobile phone users. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, Canada, pp. 488–497. IEEE (2016)

    Google Scholar 

  17. Sarker, I.H., Kabir, M.A., Colman, A., Han, J.: An effective call prediction model based on noisy mobile phone data. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM (2017)

    Google Scholar 

  18. Srinivasan, V., Moghaddam, S., Mukherji, A.: MobileMiner: mining your frequent patterns on your phone. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM (2014)

    Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)

    MATH  Google Scholar 

  20. Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.: Weka: practical machine learning tools and techniques with Java implementations (1999)

    Google Scholar 

  21. Wu, C.-C., Chen, Y.-L., Liu, Y.-H., Yang, X.-Y.: Decision tree induction with a constrained number of leaf nodes. Appl. Intell. 45(3), 673–685 (2016)

    Article  Google Scholar 

  22. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  23. Zhu, H., Chen, E.: Mining mobile user preferences for personalized context-aware recommendation. ACM Trans. Intell. Syst. Technol. 5(4) (2014)

    Article  Google Scholar 

  24. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal H. Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarker, I.H., Kabir, M.A., Colman, A., Han, J. (2018). An Improved Naive Bayes Classifier-Based Noise Detection Technique for Classifying User Phone Call Behavior. In: Boo, Y., Stirling, D., Chi, L., Liu, L., Ong, KL., Williams, G. (eds) Data Mining. AusDM 2017. Communications in Computer and Information Science, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-13-0292-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0292-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0291-6

  • Online ISBN: 978-981-13-0292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics