Metal-Oxide Nanostructures Designed by Glancing Angle Deposition Technique and Its Applications on Sensors and Optoelectronic Devices: A Review | SpringerLink
Skip to main content

Metal-Oxide Nanostructures Designed by Glancing Angle Deposition Technique and Its Applications on Sensors and Optoelectronic Devices: A Review

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 711))

Included in the following conference series:

  • 1631 Accesses

Abstract

Glancing angle deposited (GLAD) metal-oxide nanostructure films are promising materials for sensors and optoelectronic devices application due to the easy fabrication process, structural dependent properties and a large surface to volume ratio. This paper focuses on the literature reviews of metal-oxide nanostructures deposited by GLAD using all the possible deposition techniques such as thermal/electron-beam evaporation, sputtering magnetron, and pulsed laser deposition. The principle behind the formation of nanostructure through GLAD has also been discussed in details. The detailed analysis of the devices and their principle based on GLAD deposited metal-oxide nanostructures for different optoelectronic and sensor devices are also presented. This literature review will be helpful to understand and explore more on the growth of metal-oxide nanostructures using glancing angle deposition technique for futuristic sensors and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, B., Sirringhaus, H.: Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005)

    Article  Google Scholar 

  2. Chauhan, I., Aggrawal, S., Chandravati, Mohanty, P.: Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: a review, pp. 1–18. The Royal Society of Chemistry (2015)

    Google Scholar 

  3. Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, H.Q.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  4. Lu, J.G., Chang, P., Fan, Z.: Quasi-one-dimensional metal oxide materials-Synthesis, properties, and applications. Mater. Sci. Eng., R 52, 49–91 (2006)

    Article  Google Scholar 

  5. Mathur, S., Singh, A.P., Muller, R., Leuning, T.: Metal-organic chemical vapor deposition of metal oxide films and nanostructures. Ceram. Sci. Technol. 3, 291–336 (2012)

    Article  Google Scholar 

  6. Cheng, G., Stern, E., Guthrie, S., Reed, M.A., Klie, R., Hao, Y., Meng, G., Zhang, L.: Indium oxide nanostructures. Appl. Phys. A 83, 233–240 (2006)

    Article  Google Scholar 

  7. Chang, P.C., Fan, Z., Wang, D., Tseng, W.Y., Chiou, W.A., Hong, J., Lu, J.G.: ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 16, 5133–5137 (2004)

    Article  Google Scholar 

  8. Thabethe, B.S., Malgas, G.F., Motaung, D.E., Malwela, T., Arendse, C.J.: Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process. J. Nanomaterials 2013, 1–7 (2013)

    Article  Google Scholar 

  9. Kiriakidis, G., Dovinos, D., Suchea, M.: Sensing using nanostructured metal oxide thin films. In: Proceedings of SPIE – The International Society for Optical Engineering, vol. 6370, pp. 1–12 (2006)

    Google Scholar 

  10. Huotari, J., Lappalainen, J., Puustinen, J., Baur, T., Alepee, C., Haapalainen, T., Komulainen, S., Pylvanainen, J., Spetz, A.L.: Pulsed laser deposition of metal oxide nanoparticles, agglomerates, and nanotrees for chemical sensors. Eurosensors 120, 1158–1161 (2015)

    Google Scholar 

  11. Sui, R., Charpentier, P.: Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem. Rev. 112, 3057–3082 (2012)

    Article  Google Scholar 

  12. Tong, Y.X., Li, G.R.: Electrodeposition of metal oxide nanostructures: growth and properties. Am. Sci. Publ. 5, 1–33 (2010)

    Google Scholar 

  13. Yu, H.K., Lee, J.L.: Growth mechanisms of metal-oxide nanowires synthesized by electron beam evaporation: a self-catalytic vapor-liquid-solid process. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  14. Hawkeye, M.M., Taschuk, M.T., Brett, M.J.: Introduction: glancing angle deposition technology. In: Glancing Angle Deposition of Thin Films: Engineering the Nanoscale, pp. 1–30 (2014)

    Google Scholar 

  15. Zhao, Y.P., Ye, D.X., Wang, G.C., Lu, T.M.: Designing nanostructures by glancing angle deposition. In: Proceedings of SPIE, vol. 5219, pp. 59–73 (2003)

    Google Scholar 

  16. Krause, K.M., Taschuk, M.T., Harris, K.D., Rider, D.A., Wakefield, N.G., Sit, J.C., Buriak, J.M., Thommes, M., Brett, M.J.: Surface area characterization of obliquely deposited metal oxide nanostructured thin films. Langmuir 26, 4368–4376 (2009)

    Article  Google Scholar 

  17. Barranco, A., Borras, A., Gonzalez-Elipe, A.R., Palmero, A.: Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater Sci. 76, 59–153 (2016)

    Article  Google Scholar 

  18. Hawkeye, M.M., Brett, M.J.: Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol., A 25, 1317–1335 (2007)

    Article  Google Scholar 

  19. Patzig, C., Karabacak, T., Fuhrmann, B., Rauschenbach, B.: Glancing angle sputter deposited nanostructures on rotating substrates: experiments and simulations. J. Appl. Phys. 104, 1–9 (2008)

    Article  Google Scholar 

  20. Robbie, K., Sit, J.C., Brett, M.J.: Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol., B 16, 1115–1122 (1998)

    Article  Google Scholar 

  21. van Kranenburg, H., Lodder, C.: Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. 11, 295–354 (1994)

    Article  Google Scholar 

  22. Jensen, M.O., Brett, M.J.: Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763–768 (2005)

    Article  Google Scholar 

  23. Robbie, K., Brett, M.J.: Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol., A 15, 1460–1465 (1997)

    Article  Google Scholar 

  24. Sun, Y.F., Liu, S.B., Meng, F.L., Liu, J.Y., Jin, Z., Kong, L.T., Liu, J.H.: Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)

    Article  Google Scholar 

  25. Steele, J.J., Taschuk, M.T., Brett, M.J.: Response time of nanostructured relative humidity sensors. Sens. Actuators B Chem. 140, 610–615 (2009)

    Article  Google Scholar 

  26. Steele, J.J., Taschuk, M.T., Brett, M.J.: Nanostructured metal oxide thin films for humidity sensors. IEEE Sens. J. 8(8), 1422–1429 (2008)

    Article  Google Scholar 

  27. Setti, G.O., Jesus, D.P.D., Joanni, E.: Self-catalyzed carbon plasma-assisted growth of tin-doped indium oxide nanostructures by the sputtering method. Mater. Res. Express 3, 1–7 (2016)

    Article  Google Scholar 

  28. Liang, Y.H., Liu, C.P.: Self-assembled Zn/ZnO dots on silicon by RF magnetron sputter. Microprocesses and Nanotechnology, pp. 158–159 (2008)

    Google Scholar 

  29. Deniz, D., Frankel, D.J., Lad, R.J.: Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition. Thin Solid Films 518, 4095–4099 (2009)

    Article  Google Scholar 

  30. Wongchoosuk, C., Wisitsoraat, A., Horprathum, M., Tuantranont, A.: Carbon doped tungsten oxide nanorods NO2 sensor prepared by glancing angle RF sputtering. Sens. Actuators B Chem. 181, 388–394 (2013)

    Article  Google Scholar 

  31. Horprathum, M., Srichaiyaperk, T., Samransuksamer, B., Wisitsoraat, A., Eiamchai, P., Limwichean, S., et al.: Ultrasensitive hydrogen sensor based on Pt-decorated WO3 NanorodsPrepared by Glancing-Angle dc magnetron sputtering. ACS Appl. Mater. Interfaces. 6, 22051–22060 (2014)

    Article  Google Scholar 

  32. Oros, C., Wisitsoraat, A., Horprathum, M.: Fabrication and ethanol sensing characterization of tin oxide nanorods prepared by glancing angle deposition technique. Appl. Phys. Mater. Appl. II 675, 163–166 (2016)

    Google Scholar 

  33. Srinivasarao, K., Rajnikanth, B., Paduangarao, K., Mukhopadhyay, P.K.: Physical investigations on pulsed laser deposited nanocrystalline ZnO thin films. Appl. Phys. A 108(1), 247–254 (2012)

    Article  Google Scholar 

  34. Hattori, A.N., Ono, A., Tanaka, H.: Position-, size-, and shape-controlled highly crystalline ZnO nanostructures. Nanotechnology 22, 1–5 (2011)

    Article  Google Scholar 

  35. Salim, E.T., Wazny, M.S.A., Fakhry, M.A.: Glancing angle reactive pulsed laser deposition (GRPLD) for Bi2O3/Si heterostructure. Mod. Phys. Lett. B 27(16), 1–27 (2013)

    Article  Google Scholar 

  36. Marcu, A., Stokker, F., Zamani, R.R., Lunga, C.P.: Glancing angle deposition in a pulsed laser ablation/vapor-liquid-solid grow system. Appl. Surf. Sci. 327, 262–267 (2014)

    Article  Google Scholar 

  37. Krishna, M.G., Muralidhar, G.K., Rao, K.N., Rao, G.M., Mohan, S.: A novel electron beam evaporation technique for the deposition of superconducting thin films. Phys. C 175, 623–626 (1991)

    Article  Google Scholar 

  38. Chakrabartty, S., Mondal, A., Sarkar, M.B., Choudhuri, B., Saha, A.K., Bhattacharya, A.: TiO2 nanoparticles arrays ultraviolet-a detector with au schottky contact. IEEE Photonics Technol. Lett. 26(11), 1065–1068 (2014)

    Article  Google Scholar 

  39. Tsoi, S., Fok, E., Sit, J.C., Veinot, J.G.C.: Surface functionalization of porous nanostructured metal oxide thin films fabricated by glancing angle deposition. Chem. Mater. 18, 5260–5266 (2006)

    Article  Google Scholar 

  40. Jeon, J.M., Shim, Y.S., Han, S.D., Kim, D.H., Kim, Y.H., Kang, C.Y., Kim, J.S., Kim, M., Jang, H.W.: Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. The Royal Society of Chemistry pp. 1–8 (2013)

    Google Scholar 

  41. Yoo, K.S., Han, S.D., Moon, H.G., Yoon, S.J., Kang, C.Y.: Highly sensitive H2S sensor based on the metal-catalyzed SnO2 nanocolumns fabricated by glancing angle deposition. Sensors 15, 15468–15477 (2015)

    Article  Google Scholar 

  42. Mondal, A., Singh, N.K., Chinnamuthu, P., Dhar, J.C., Bhattacharyya, A., Choudhury, S.: Enlarged photodetection using SiO x nanowire arrays. IEEE Photonics Technol. Lett. 24(22), 2020–2023 (2012)

    Article  Google Scholar 

  43. Ngangbam, C., Shougaijam, B., Mondal, A.: Dispersed Ag nanoparticles on TiO2 nanowire clusters for photodetection. TENCON-IEEE, pp. 1–4 (2014)

    Google Scholar 

  44. Shuang, S., Xie, Z., Zhang, Z.: Enhanced visible light photocatalytic performance by nanostructured semiconductors with glancing angle deposition method. INTECH, pp. 163–184 (2016)

    Google Scholar 

  45. Li, Z., Zhu, Y., Zhu, Q., Ni, J., Zhang, Z.: Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition. Appl. Surf. Sci. 258, 2766–2770 (2012)

    Article  Google Scholar 

  46. Srivastava, G.P., Bhatnagar, P.K., Dhariwal, S.R.: Theory of metal-oxide-semiconductor solar cells. Solid State Electron. 22(6), 581–587 (1979)

    Article  Google Scholar 

  47. Garcia, L.G., Valls, I.G., Cantu, M.L., Barranco, A., Ellipe, A.R.G.: Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy Environ. Sci. 4, 3426–3435 (2011)

    Article  Google Scholar 

  48. Leem, J.W., Yu, J.S.: Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/µc-Si: H tandem thin film solar cells. Opt. Express 19(S3), A258–A268 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Department of Electronics & Communication Engineering, National Institute of Technology Manipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D. (2017). Metal-Oxide Nanostructures Designed by Glancing Angle Deposition Technique and Its Applications on Sensors and Optoelectronic Devices: A Review. In: Kaushik, B., Dasgupta, S., Singh, V. (eds) VLSI Design and Test. VDAT 2017. Communications in Computer and Information Science, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-7470-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7470-7_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7469-1

  • Online ISBN: 978-981-10-7470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics