Abstract
In the satellite Disruption-Tolerant Networks (DTN), capacity of multi-path delivery is quite susceptible to a quasi-deterministic topology with limited resource in nodes. Currently, the space-time graph and event-driven graph, proposed for capturing the dynamics of DTN-inbuilt satellite networks, will incur excess demands of computation and storage with dispensable quantization errors. In this paper, we construct an updating discrete graph (UDG) based algorithmic model to make quantitative analysis on the capacity of a DTN-inbuilt Multiple Satellites and Multiple Ground Stations (MSMGS) networks. In particular, a network capacity analytical framework is established by solving a corresponding maximum flow problem with delivery delay and transmission constraints. The numerical results show that, compared with space-time graph and event-driven graph methods, the proposed method presents obvious improvements with respect to expected network capacity with limited complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wei, Z., Zhang, G., Dong, F., Xie, Z., Bian, D.: Capacity model and constraints analysis for integrated remote wireless sensor and satellite network in emergency scenarios. Sensors 15(11), 29036–29055 (2015)
Diana, R., Lochin, E., Franck, L., Baudoin, C., Dubois, E., Gelard, P.: A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE, September 2012
Yang, Y., Xu, M., Wang, D., Wang, Y.: Towards energy-efficient routing in satellite networks. IEEE J. Sel. Areas Commun. 34(12), 3869–3886 (2016)
Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay-and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)
Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Suzuki, K.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015)
Merugu, S., Ammar, M.H., Zegura, E.W.: Routing in space and time in networks with predictable mobility. Georgia Institute of Technology (2004)
Yuan, P., Yang, Z., Li, Y., Zhang, Q.: An event-driven graph-based min-cost delivery algorithm in earth observation DTN networks. In: 2015 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE, October 2015
Bezirgiannidis, N., Burleigh, S., Tsaoussidis, V.: Delivery time estimation for space bundles. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1897–1910 (2013)
Acknowledgements
The authors would like to express their high appreciations to the supports from the National Natural Science Foundation of China (61571156), National Science and Technology Major Project (91538110), and Natural Science Foundation of Guangdong Province (2016A030313661).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yuan, P., Yang, Z., He, N., Zhang, Q. (2019). An Updating Discrete Graph-Based Capacity Analytical Framework for Satellite Disruption-Tolerant Networks. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, vol 463. Springer, Singapore. https://doi.org/10.1007/978-981-10-6571-2_19
Download citation
DOI: https://doi.org/10.1007/978-981-10-6571-2_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6570-5
Online ISBN: 978-981-10-6571-2
eBook Packages: EngineeringEngineering (R0)