Abstract
3D mapping is a difficult problem due to real-world places whose appearance and scale can be various. Owing to the rapid development of computer and robot system, remarkable improvements of performance are achieved in 3D map technology, which in turn contribute to the significant advances in SLAM. This paper presents the state-of-the-art 3D map technology and system, which is classified into topological maps, metric maps and semantic maps. Additionally, the advantages and disadvantages of various 3D map technologies are analyzed in different aspects, including navigation performance, localization performance, visual perception, scalability, computation cost and mapping difficulty. In order to better understand them, the key performance parameters of the 3D map technologies are compared in a table. Finally, the paper ends with a discussion on the open problems and future of 3D map technology.
L. Chen—This work was supported by Natural Science Foundation of China (61403244), Science and Technology Commission of Shanghai Municipality under “Yangfan Program” (14YF1408600, 16YF1403700), Key Project of Science and Technology Commission of Shanghai Municipality (15411953502).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
IEEE Standard for Robot Map Data Representation for Navigation. 1873–2015 IEEE Standard for Robot Map Data Representation for Navigation, pp. 1–54 (2015)
Lowry, S., Sünderhauf, N., Newman, P., Leonard, J.J.: Visual place recognition: a survey. IEEE Trans. Robot. 32(1), 1–19 (2016)
Naseer, T., Spinello, L., Burgard, W., Stachniss, C.: Robust visual robot localization across seasons using network flows. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 2564–2570 (2014)
Ulrich, I., Nourbakhsh, I.: Appearance-based place recognition for topological localization. In: IEEE International Conference on Robotics and Automation. Symposia Proceedings 2000 ICRA. Millennium Conference (Cat. No.00CH37065), vol. 2, pp. 1023–1029 (2000)
Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. 30(9), 1100–1123 (2011)
Blanco, J.L., FernÁndez-Madrigal, J.A., GonzÁlez, J.: Toward a unified bayesian approach to hybrid metric-topological SLAM. IEEE Trans. Robot. 24(2), 259–270 (2008)
Paul, R., Newman, P.: FAB-MAP 3D: topological mapping with spatial and visual appearance. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2649–2656 (2010)
Milford, M.J., Wyeth, G.F.: SeqSLAM: visual route-based navigation for sunny summer days and stormy winter nights. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1643–1649 (2012)
Maddern, W., Milford, M., Wyeth, G.: Capping computation time and storage requirements for appearance-based localization with CAT-SLAM. In: 2012 IEEE International Conference on Robotics and Automation, pp. 822–827 (2012)
Pepperell, E., Corke, P.I., Milford, M.J.: All-environment visual place recognition with SMART. In: IEEE International Conference on Robotics and Automation, pp. 1612–1618 (2014)
Krajník, T., Fentanes, J.P., Mozos, O.M., Duckett, T., Ekekrantz, J., Hanheide, M.: Long-term topological localisation for service robots in dynamic environments using spectral maps. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4537–4542 (2014)
Boal, J., Sánchez-Miralles, Á., Arranz, Á.: Topological simultaneous localization and mapping: a survey. Robotica 32(5), 803–821 (2014)
Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Eighteenth National Conference on Artificial Intelligence, pp. 593–598 (2002)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)
Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013)
Castellanos, J.A., Tardos, J.D.: Mobile robot localization and map building: a multisensor fusion approach. Springer, Heidelberg (1999)
Ryde, J., Hu, H.: 3D mapping with multi-resolution occupied voxel lists. Auton. Robots 28(2), 169–185 (2010)
Labbe, M., Michaud, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666 (2014)
Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: IEEE International Conference on Computer Vision, pp. 2320–2327 (2011)
Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)
Oleynikova, H., Millane, A., Taylor, Z., Galceran, E., Nieto, J., Siegwart, R.: Signed distance fields: A natural representation for both mapping and planning. In: RSS Workshop on Geometry and Beyond. (2016)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D.: KinectFusion: real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)
Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)
Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014)
Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4569–4574 (2011)
Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3859–3866 (2012)
Whelan, T., Kaess, M., Fallon, M.F., Johannsson, H., Leonard, J.J., McDonald, J.B.: Kintinuous: spatially extended kinectfusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras (2012)
Steinbrücker, F., Sturm, J., Cremers, D.: Volumetric 3D mapping in real-time on a CPU. In: IEEE International Conference on Robotics and Automation, pp. 2021–2028 (2014)
Cadena, C., Dick, A., Reid, I.D.: A fast, modular scene understanding system using context-aware object detection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4859–4866 (2015)
Salasmoreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: Computer Vision and Pattern Recognition, pp. 1352–1359 (2013)
Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: IEEE International Conference on Robotics and Automation, pp. 3515–3522 (2012)
Cunningham, A., Indelman, V., Dellaert, F.: DDF-SAM 2.0: consistent distributed smoothing and mapping. In: IEEE International Conference on Robotics and Automation, pp. 5220–5227 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, A., Luo, Y., Chen, L., Xu, Y. (2017). Survey of 3D Map in SLAM: Localization and Navigation. In: Fei, M., Ma, S., Li, X., Sun, X., Jia, L., Su, Z. (eds) Advanced Computational Methods in Life System Modeling and Simulation. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 761. Springer, Singapore. https://doi.org/10.1007/978-981-10-6370-1_41
Download citation
DOI: https://doi.org/10.1007/978-981-10-6370-1_41
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6369-5
Online ISBN: 978-981-10-6370-1
eBook Packages: Computer ScienceComputer Science (R0)