Abstract
The paper discusses an essential data mining task, clustering. Clustering groups similar instances and results in classes of similar instances. In this paper, clustering methods k-means, SOM clustering, and hierarchical method of clustering are discussed and implemented in R. Before the application of clustering algorithms cluster tendency is evaluated to determine whether the data set is appropriate for clustering or not. Cluster tendency is also discussed in the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Y., Zhong, N.:Web Mining Model and Its Application on Information gathering. Knowledge Based Systems, vol 17, pp. 207–217 (2004).
Narang, Tulika., Tewari, R.R.: Multilevel Approach to Ontology Driven Clustering of Web Documents. In: International Conference on Information and Knowledge Engineering, pp. 21–25. USA (2012).
Kosala, Raymond., Blockeel, Hendrick.: Web Mining Research: A Survey. ACM SIGKDD, vol 2(1) (2000).
Kaufmann, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, USA (1999).
Yates, Baeza, R,.Neto, Ribeiro, B.: Modern Information Retrieval, Addison Wesley (1999).
Nigro, Oscar, Hector., Cisaro, Gonzalez, Sandra., Xodo, Hugo, Daniel.: Data Mining with Ontologies-Implementations, Findings, and Frameworks. IGI Global (2008).
Han, Jiawei., Kamber, Micheline.: Data Mining Concepts and Techniques. Morgan Kaufman, USA (2012).
Dunham, H, Margaret., Sridhar, S.: Data Mining–Introductory and Advanced Topics. Pearson Education, India (2006).
Roiger, J, Richard.,Geatz, W, Michael.: Data Mining: A Tutotrial-based Primer, Addison-Wesley (2005).
Gardener, Mark.: Beginning R: The Statistical Programming Language. Wrox (2013).
Narang, Tulika., Tewari, R.R.: SOM Based Clustering of Web documents using an ontology. International Journal of Engineering Research and Science and Technology vol2, pp. 167–174 (2013).
Narang, Tulika.: Hierarchical clustering of Web documents. International Journal of Innovations & Advancement in Computer science vol.4, pp. 154–159 (2015).
Chang, K., Liu, B.: Editorial: Special issue on web content mining, SIGKDD Explorations 6(2) (2004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Narang, T. (2017). Finding Clusters of Data: Cluster Analysis in R. In: Satapathy, S., Bhateja, V., Udgata, S., Pattnaik, P. (eds) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications . Advances in Intelligent Systems and Computing, vol 515. Springer, Singapore. https://doi.org/10.1007/978-981-10-3153-3_63
Download citation
DOI: https://doi.org/10.1007/978-981-10-3153-3_63
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3152-6
Online ISBN: 978-981-10-3153-3
eBook Packages: EngineeringEngineering (R0)