Liver Fibrosis Diagnosis Support System Using Machine Learning Methods | SpringerLink
Skip to main content

Liver Fibrosis Diagnosis Support System Using Machine Learning Methods

  • Chapter
  • First Online:
Advanced Computing and Systems for Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 395))

Abstract

Liver fibrosis is a common disease of the European population (but not only them). It may have many backgrounds and may develop with a different rapidity—it may stay hidden for many years or rapidly develop into terminal stage called cirrhosis, where liver can no longer fulfill its function. Unfortunately, current methods of diagnosis are either connected with a potential risk for a patient and require a hospitalization or are expensive and not very accurate. This paper presents a comparative study of various feature selection algorithms combined with selected machine learning algorithms which may be used to build an advanced liver fibrosis diagnosis support system based on a nonexpensive and safe routine blood tests. Experiments carried out on a dataset collected by authors, proved usability and satisfactory accuracy of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wojtyniak, B., Goryński, P., Moskalewicz, B.: Sytuacja zdrowotna ludności polski i jej uwarunkowania. Technical report, Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny, 2012 (in Polish)

    Google Scholar 

  2. Stevenson, M., Lloyd-Jones, M., Morgan, M.Y., Wong, R.: Non-invasive diagnostic assessment tools for the detection of liver fibrosis in patients with suspected alcohol-related liver disease: a systematic review and economic evaluation. Health Technol. Assess. 16(4) (2012). doi:10.3310/hta16040

  3. Lucas, P.J.F., Segaar, R.W., Janssens, A.R.: HEPAR: an expert system for diagnosis of disorders of the liver and biliary tract. Liver 9, 266–275 (1989)

    Article  Google Scholar 

  4. Adlassnig, K.P., Horak, W.: Development and retrospective evaluation of HEPAXPERT—I: a routinely-used expert system for interpretive analysis of hepatitis A and B serologic findings. Artif. Intell. Med. 7, 1–24 (1995)

    Article  Google Scholar 

  5. Zhao, Y.K., Tsutsui, T., Endo, A., Minato, K., Takahashi, T.: Design and development of an expert system to assist diagnosis and treatment of chronic hepatitis using traditional Chinese medicine. Med. Inform. 9, 37–45 (1994)

    Article  Google Scholar 

  6. Shiomi, S., Kuroki, T., Jomura, H., Ueda, T., Ikeoka, N., Kobayashi, K., Ikeda, H., Ochi, H.: Diagnosis of chronic liver disease from liver scintiscans by fuzzy reasoning. J. Nucl. Med. 36, 593–598 (1995)

    Google Scholar 

  7. Bedossa, P., Poynard, T.: An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24, 289–293 (1996)

    Article  Google Scholar 

  8. Regev, A., Berho, M., Jeffers, L., Milikowski, C., Molina, E., Pyrosopoulos, N., Feng, Z., Reddy, Z., Schiff, E.: Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 97(10), 2614–2618 (2002)

    Article  Google Scholar 

  9. Bedossa, P., Dargere, D., Paradis, V.: Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38, 1449–1457 (2003)

    Article  Google Scholar 

  10. Doroz, R., Porwik, P.: Handwritten signature recognition with adaptive selection of behavioral features. In: Communications in Computer and Information Science (CISIM), vol. 245, pp. 128–136. Springer, Kolkata (2011)

    Google Scholar 

  11. Porwik, P., Doroz, R.: Self-adaptive biometric classifier working on the reduced dataset. In: Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, vol. 8480, pp. 377–388. Springer International Publishing, New York (2014)

    Google Scholar 

  12. Hall, M.A.: Correlation-Based Feature Subset Selection for Machine Learning. Hamilton, New Zealand (1998)

    Google Scholar 

  13. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Ninth International Workshop on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  14. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: European Conference on Machine Learning, pp. 171–182 (1994)

    Google Scholar 

  15. Robnik-Sikonja, M., Kononenko, I.: An adaptation of Relief for attribute estimation in regression. In: Fourteenth International Conference on Machine Learning, pp. 296–304 (1997)

    Google Scholar 

  16. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  17. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  19. Orczyk, T., Porwik, P., Bernaś, M.: Medical diagnosis support system based on the ensemble of single-parameter classifiers. J. Med. Inform. Technol. 23(2014), 173–179 (2014)

    Google Scholar 

  20. Foster, K.R., Koprowski, R., Skufca, J.D.: Machine learning, medical diagnosis, and biomedical engineering research—commentary. Biomed. Eng. 13(94) (2014). doi:10.1186/1475-925X-13-94

    Google Scholar 

  21. Quinlan, R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  22. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    MATH  Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  24. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–91 (1993)

    Article  MATH  Google Scholar 

  25. Kohavi, R.: The power of decision tables. In: 8th European Conference on Machine Learning, 174–189 (1995)

    Google Scholar 

  26. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner, Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). Springer, Berlin (2007)

    Google Scholar 

  27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Orczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Orczyk, T., Porwik, P. (2016). Liver Fibrosis Diagnosis Support System Using Machine Learning Methods. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 395. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2650-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2650-5_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2648-2

  • Online ISBN: 978-81-322-2650-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics