A Graph-Based Representation to Detect Linear Features | SpringerLink
Skip to main content

A Graph-Based Representation to Detect Linear Features

  • Conference paper
Graph Based Representations in Pattern Recognition

Part of the book series: Computing Supplement ((COMPUTING,volume 12))

Abstract

Graph-based representations of the scene are well adapted to introduce high-level knowledge in image segmentation. The problem consists then in searching the graph configuration or labeling minimizing some cost function. In the case of local relationships between the graph nodes, the Markovian framework and simulated annealing algorithms provide some answers to this question.

We are interested in this paper in the automatic or semi-automatic detection of linear structures like roads or hydrological networks in satellite radar images. Using a graph of segments and introducing local contextual properties of these networks, a Markov Random Field is defined to perform the detection. Interaction choice relies on a priori knowledge on the usual aspect of the linear objects to detect. Results are presented for real radar images both for road and hydrological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. Ser. B 36, 192–326 (1974).

    MathSciNet  MATH  Google Scholar 

  2. Bunke, H.: Attributed programmed graph grammars and their application to schematic diagram interpretation. IEEE Trans. Pattern Analy. Mach. Intell. 4, 574–582 (1982).

    Article  MATH  Google Scholar 

  3. Cox, I. J., Rehg, J. M., Hingorani. S.: A Bayesian multiple-hypothesis approach to edge grouping and contour segmentation. Int. J. Comput. Vision 11, 5–24 (1993).

    Article  Google Scholar 

  4. David, C., Zucker, S. W.: Potentials, valleys and dynamic global coverings. Int. J. Comput. Vision 5, 219–238(1990).

    Article  Google Scholar 

  5. Guérin, P.: Apport des cartes topographiques pour l’analyse de scènes en imagerie aérienne: application à la détection du réseau routier. PhD thesis, Université Paris VII, 1996.

    Google Scholar 

  6. Hellwich, O., Mayer, H., Winkler, G.: Detection of lines in synthetic aperture radar (SAR) scenes. ISPRS Int. Arch. Photogramm. Remote Sensing 31, 312–320 (1996).

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contours models. Int. J. Comput. Vision 1, 321–331 (1988).

    Article  Google Scholar 

  8. Lowe, D. G.: Organization of smooth image curves at multiple scales. In: Second International Conference on Computer Vision Florida, USA, pp. 558–567, 1989.

    Google Scholar 

  9. Samadani, R., Vesecky, J. F.: Finding curvilinear features in speckled images. IEEE Trans. Geosci. Remote Sensing 28, 669–673 (1990).

    Article  Google Scholar 

  10. Touzi, R., Lopes, A., Bousquet, P.: A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sensing 26, 764–773 (1988).

    Article  Google Scholar 

  11. Tupin, F., Gouinaud, C., Maître, H., Crettez, J-P., Nicolas, J.-M.: Détection de structures linéaires sur des images ROS. Traitement du Signal 13, 635–650 (1997).

    Google Scholar 

  12. Wood, J. W.: Line finding algorithms for SAR. R. Signals Radar Establ. (Memorandum 3 841), 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Tupin, F., Mangin, J., Pechersky, E., Nicolas, J.M., Maître, H. (1998). A Graph-Based Representation to Detect Linear Features. In: Jolion, JM., Kropatsch, W.G. (eds) Graph Based Representations in Pattern Recognition. Computing Supplement, vol 12. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6487-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6487-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83121-2

  • Online ISBN: 978-3-7091-6487-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics