Abstract
Graph-based representations of the scene are well adapted to introduce high-level knowledge in image segmentation. The problem consists then in searching the graph configuration or labeling minimizing some cost function. In the case of local relationships between the graph nodes, the Markovian framework and simulated annealing algorithms provide some answers to this question.
We are interested in this paper in the automatic or semi-automatic detection of linear structures like roads or hydrological networks in satellite radar images. Using a graph of segments and introducing local contextual properties of these networks, a Markov Random Field is defined to perform the detection. Interaction choice relies on a priori knowledge on the usual aspect of the linear objects to detect. Results are presented for real radar images both for road and hydrological networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Statist. Soc. Ser. B 36, 192–326 (1974).
Bunke, H.: Attributed programmed graph grammars and their application to schematic diagram interpretation. IEEE Trans. Pattern Analy. Mach. Intell. 4, 574–582 (1982).
Cox, I. J., Rehg, J. M., Hingorani. S.: A Bayesian multiple-hypothesis approach to edge grouping and contour segmentation. Int. J. Comput. Vision 11, 5–24 (1993).
David, C., Zucker, S. W.: Potentials, valleys and dynamic global coverings. Int. J. Comput. Vision 5, 219–238(1990).
Guérin, P.: Apport des cartes topographiques pour l’analyse de scènes en imagerie aérienne: application à la détection du réseau routier. PhD thesis, Université Paris VII, 1996.
Hellwich, O., Mayer, H., Winkler, G.: Detection of lines in synthetic aperture radar (SAR) scenes. ISPRS Int. Arch. Photogramm. Remote Sensing 31, 312–320 (1996).
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contours models. Int. J. Comput. Vision 1, 321–331 (1988).
Lowe, D. G.: Organization of smooth image curves at multiple scales. In: Second International Conference on Computer Vision Florida, USA, pp. 558–567, 1989.
Samadani, R., Vesecky, J. F.: Finding curvilinear features in speckled images. IEEE Trans. Geosci. Remote Sensing 28, 669–673 (1990).
Touzi, R., Lopes, A., Bousquet, P.: A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sensing 26, 764–773 (1988).
Tupin, F., Gouinaud, C., Maître, H., Crettez, J-P., Nicolas, J.-M.: Détection de structures linéaires sur des images ROS. Traitement du Signal 13, 635–650 (1997).
Wood, J. W.: Line finding algorithms for SAR. R. Signals Radar Establ. (Memorandum 3 841), 1985.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Wien
About this paper
Cite this paper
Tupin, F., Mangin, J., Pechersky, E., Nicolas, J.M., Maître, H. (1998). A Graph-Based Representation to Detect Linear Features. In: Jolion, JM., Kropatsch, W.G. (eds) Graph Based Representations in Pattern Recognition. Computing Supplement, vol 12. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6487-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-7091-6487-7_3
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-83121-2
Online ISBN: 978-3-7091-6487-7
eBook Packages: Springer Book Archive