Localizing the 4-Split Method for G1 Free-Form Surface Fitting | SpringerLink
Skip to main content

Localizing the 4-Split Method for G1 Free-Form Surface Fitting

  • Conference paper
Geometric Modelling

Part of the book series: Computing ((COMPUTING,volume 14))

Abstract

One common technique for modeling closed surfaces of arbitrary topological type is to define them by piecewise parametric triangular patches on an irregular mesh. This surface mesh serves as a control mesh which is either interpolated or approximated. A new method for smooth triangular mesh interpolation has been developed. It is based on a regular 4-split of the domain triangles in order to solve the vertex consistency problem. In this paper a generalization of the 4-split domain method is presented in that the method becomes completely local. It will further be shown how normal directions, i.e. tangent planes, can be prescribed at the patch vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajaj, C.: Smoothing polyhedra using implicit algebraic splines. Comput. Graphics 26, 79–88 (1992).

    Article  Google Scholar 

  2. Farin, G.: A construction for visual CI continuity of polynomial surface patches. Comput. Graphics Image Proc. 20, 272–282 (1982).

    Article  MATH  Google Scholar 

  3. Farin, G.: Curves and surfaces for computer aided geometric design 4th ed. New York: Academic Press, 1997.

    MATH  Google Scholar 

  4. Gregory, J. A.: N-sided surface patched. In: The mathematics of surfaces (Gregory, J. ed.), pp. 217–232. Oxford: Clarendon Press, 1986.

    Google Scholar 

  5. Hagen, H.: Geometric surface patches without twist constraints. Comput. Aided Geom. Des. 3, 179–184 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hagen, H., Pottmann, H.: Curvature continuous triangular interpolants. In: Mathematical methods in computer aided geometric design (Lyche, T., Schumaker, L. L. eds.), pp. 373–384. New York: Academic Press, 1989.

    Google Scholar 

  7. Hahmann, S., Bonneau, G.-P.: Triangular G1 interpolation by 4-splitting domain triangles. Comput. Aided Geom. Des. 17, 731¡ª 757 (2000).

    Google Scholar 

  8. Hahmann, S., Bonneau, G.-P., Taleb, R.: Smooth irregular mesh interpolation. ln: Curve and surface fitting: Saint-Malo 1999 (Cohen, A., Rabut, C., Schumaker, L. L. eds.), pp. 237–246. Nashville: Vanderbilt University Press, 2000.

    Google Scholar 

  9. Jensen, T.: Assembling triangular and rectangular patches and multivariate splines. In: Geometric modeling: algorithms and new trends (Farin, G. ed.), pp. 203–220. Philadelphia: SIAM, 1987.

    Google Scholar 

  10. Loop, C.: A G’ triangular spline surface of arbitrary topological type. Comput. Aided Geom. Des. 11, 303–330, (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mann, S.: Surface approximation using geometric Hermite patches. PhD dissertation. University of Washington, 1992

    Google Scholar 

  12. Neamtu, M., Pluger, P.: Degenerate polynomial patches of degree 4 and 5 used for geometrically smooth interpolation in 183. Comput. Aided Geom. Des. 11, 451–474 (1994).

    Article  MATH  Google Scholar 

  13. Nielson, G.: A transfinite, visually continuous, triangular interpolant. In: Geometric modeling: algorithms and new trends (Farin, G. ed.), pp. 235–246. Philadelphia: SIAM, 1987.

    Google Scholar 

  14. Peters, J.: Smooth interpolation of a mesh of curves, Construct. Approx. 7, 221–246 (1991).

    Article  MATH  Google Scholar 

  15. Piper, B. R.: Visually smooth interpolation with triangular B¨¦zier patches. In: Geometric modeling: algorithms and new trends (Farm, G. ed.), pp. 221–233. Philadelphia: SIAM, 1987

    Google Scholar 

  16. Shirman, L. A., S¨¦quin, C. H.: Local surface interpolation with B¨¦zier patches. Comput. Aided Geom. Des. 4, 279–295 (1987)

    Article  MATH  Google Scholar 

  17. Van Wijk, J. J.: Bicubic patches for approximating non-rectangular control meshes. Comput. Aided Geom. Des. 3, 1–13 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Hahmann, S., Bonneau, GP., Taleb, R. (2001). Localizing the 4-Split Method for G1 Free-Form Surface Fitting. In: Brunnett, G., Bieri, H., Farin, G. (eds) Geometric Modelling. Computing, vol 14. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6270-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6270-5_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83603-3

  • Online ISBN: 978-3-7091-6270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics