Solidarity Measures | SpringerLink
Skip to main content

Abstract

This paper regards some measures for sharing (public) goods or budgets among members with different participation quotas in a binary decision-making process. The main characteristic of such measures is that they should have elements of solidarity with those who have a weak quota of participation in the process. These measures seem appropriate for deals that require solidarity, which contrasts with the classical power indices such as the Shapley and Shubik index or the Banzhaf index. Moreover, we provide a new representation for two power indices—the Public Help Index ξ (proposed by Bertini and Stach in 2015) and the particularization of the solidarity value proposed by Nowak and Radzik in 1994—the ψ index—in a simple game using null player free winning coalitions. As it is known, a set of null player free winning coalitions unequivocally determines a simple game. Finally, we compare considered power indices considering some properties in simple games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albizuri, M., Laruelle, A.: An axiomatization of success. Soc. Choice Welfare 41(1), 145–155 (2013). https://doi.org/10.1007/s00355-012-0671-5

    Article  MATH  Google Scholar 

  2. Álvarez-Mozos, M., Ferreira, F., Alonso-Meijide, J.M., Pinto, A.A.: Characterizations of power indices based on null player free winning coalitions. Optimization: J. Math. Program. Oper. Res. 64(3), 675–686 (2015). https://doi.org/10.1080/02331934.2012.756878

  3. Arnsperger, C., Varoufakis, Y.: Toward a theory of solidarity. Erkenntnis 59, 157–188 (2003)

    Article  MATH  Google Scholar 

  4. Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review 19(2), 317–343 (1965)

    Google Scholar 

  5. Bertini, C., Stach, I.: Voting power. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 699–700. SAGE Publications, Los Angeles (2011)

    Google Scholar 

  6. Bertini, C., Stach, I.: On public values and power indices. Decis. Mak. Manuf. Serv. 9(1), 9–25 (2015). https://doi.org/10.7494/dmms.2015.9.1.9

    Article  MATH  Google Scholar 

  7. Bertini, C., Gambarelli, G., Stach, I.: A public help index. In: Braham, M., Steffen, F. (eds.) Power, Freedom, and Voting, pp. 83–98. Springer Verlag, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Bertini, C., Gambarelli, G., Stach, I.: Some open problems in the application of power indices to politics and finance. In: Holler, M., Nurmi, H. (eds.) Future of power indices, Special Issue of Homo Oeconomicus, vol. 32, no. 1, pp. 147–156. Accedo Verlagsgesellschaft, München (2015)

    Google Scholar 

  9. Bertini, C., Gambarelli, G., Stach, I.: Indici di potere in politica e in finanza, Bollettino dei docenti di matematica, No. 72, pp. 9–34. Repubblica e Cantone Ticino Ed., Bellinzona - Svizzera. Power indices in politics and finance, (in Italian) (2016)

    Google Scholar 

  10. Bertini, C., Gambarelli, G., Stach, I., Zola, M.: Some results and open problems in applications of cooperative games. Int. J. Econ. Manag. Syst. IARAS 2, 271–276 (2017)

    Google Scholar 

  11. Bertini, C., Gambarelli, G., Stach, I., Zola, M.: Power indices for finance. In: Collan, M., Kacprzyk, J. (eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. SFSC, vol. 357, pp. 45–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60207-3_4

    Chapter  Google Scholar 

  12. Bertini, C., Gambarelli, G., Stach, I., Zola, M.: The Shapley-shubik index for finance and politics. In: Algaba, E., Fragnelli, V., Sánchez-Soriano, J. (eds.) Handbook of the Shapley Value, pp. 393--417. CRC Press, Taylor & Francis Group, USA (2020). https://doi.org/10.1201/9781351241410

  13. Bertini, C., Freixas, J., Gambarelli, G., Stach, I.: Comparing power indices. Int. Game Theory Rev. 15(2), 1340004-1–1340004-19 (2013)

    Google Scholar 

  14. Béal, S., Rémila, E., Solal, P.: Axiomatization and implementation of a class of solidarity values for TU-games. Theor. Decis. 83(1), 61–94 (2017). https://doi.org/10.1007/s11238-017-9586-z

    Article  MATH  Google Scholar 

  15. Casajus, A., Huettner, F.: Null players, solidarity, and the egalitarian Shapley values. J. Math. Econ. 49(1), 58–61 (2013). https://doi.org/10.1016/j.jmateco.2012.09.008

    Article  MATH  Google Scholar 

  16. Chameni-Nembua, C.: Linear efficient and symmetric values for TU-games: sharing the joint gain of cooperation. Games Econom. Behav. 74, 431–433 (2012)

    Article  MATH  Google Scholar 

  17. Coleman, J.S.: Control of collectivities and the power of collectivity to act. In: Liberman, B. (ed.) Social choice, pp. 269–300. Gordon and Breach, New York (1971)

    Google Scholar 

  18. Dubey, P., Shapley, L.: Mathematical properties of the Banzhaf power index. Math. Oper. Res. 4(2), 99–131 (1979). https://doi.org/10.1287/moor.4.2.99

    Article  MATH  Google Scholar 

  19. Felsenthal, D.S., Machover, M.L: The Measurement of Voting Power: Theory and Practice, Problems and Paradoxes. Edward Elgar, Cheltenham (1998)

    Google Scholar 

  20. Felsenthal, D., Machover, M.: Voting power measurement: a story of misreinvention. Social Choice Welfare 25, 485–506 (2005). https://doi.org/10.1007/s00355-005-0015-9

    Article  MATH  Google Scholar 

  21. Freixas, J.: Probabilistic power indices for voting rules with abstention. Math. Soc. Sci. 64(1), 89–99 (2012). https://doi.org/10.1016/j.mathsocsci.2012.01.005

    Article  MATH  Google Scholar 

  22. Freixas, J.: The Banzhaf value for cooperative and simple multichoice games. Group Decis. Negot. 29(1), 61–74 (2019). https://doi.org/10.1007/s10726-019-09651-4

    Article  Google Scholar 

  23. Freixas, J., Pons, M.: An appropriate way to extend the Banzhaf index for multiple levels of approval. Group Decis. Negot. 30(2), 447–462 (2021). https://doi.org/10.1007/s10726-020-09718-7

    Article  Google Scholar 

  24. Gambarelli, G., Stach, I.: Power indices in politics: some results and open problems. In Holler, M.J., Widgrén, M. (eds.) Essays in Honor of Hannu Nurmi, Homo Oeconomicus, vol. 26(3/4), pp. 417–441 (2009)

    Google Scholar 

  25. Gutiérrez-López, E.: Axiomatic characterizations of the egalitarian solidarity values. Math. Social Sci. 108, 109–115 (2020). https://doi.org/10.1016/j.mathsocsci.2020.04.005

    Article  MATH  Google Scholar 

  26. Johnston, R.J.: On the measurement of power: some reactions to Laver. Environ. Plan. A 10, 907–914 (1978)

    Article  Google Scholar 

  27. König, T., Bräuninger, T.: The inclusiveness of European decision rules. J. Theor. Polit. 10, 125–142 (1998). https://doi.org/10.1177/0951692898010001006

    Article  Google Scholar 

  28. Lane, J.E., Maeland, R.: Constitutional analysis: the power index approach. Eur. J. Polit. Res. 37, 31–56 (2000). https://doi.org/10.1111/1475-6765.00503

    Article  Google Scholar 

  29. Laruelle, A., Martınez, R., Valenciano, F.: Success versus decisiveness conceptual discussion and case study. J. Theor. Polit. 18(2), 185–205 (2006). https://doi.org/10.1177/0951629806061866

    Article  Google Scholar 

  30. Malawski, M.: “Procedural” values for cooperative games. Int. J. Game Theory 42, 305–324 (2013). https://doi.org/10.1007/s00182-012-0361-7

    Article  MATH  Google Scholar 

  31. Nevison, C.H.: Structural power and satisfaction in simple games. Appl. Game Theory, 39–57 (1979). https://doi.org/10.1007/978-3-662-41501-6_3

  32. Nevison, C.H., Zicht, B., Schoepke, S.: A naive approach to the Banzhaf index of power. Behav. Sci. 23(2), 130–131 (1978). https://doi.org/10.1002/bs.3830230209

    Article  Google Scholar 

  33. Nowak, A.S., Radzik, T.: A solidarity value for n-person transferable utility games. Int. J. Game Theory 23, 43–48 (1994). https://doi.org/10.1007/BF01242845

    Article  MATH  Google Scholar 

  34. Penrose, L.S.: The elementary statistics of majority voting. J. Roy. Stat. Soc. 109(1), 53–57 (1946). https://doi.org/10.2307/2981392

    Article  Google Scholar 

  35. Rae, D.: Decision rules and individual values in constitutional choice. Am. Polit. Sci. Rev. 63, 40–56 (1969). https://doi.org/10.2307/1954283

    Article  Google Scholar 

  36. Rodríguez-Segura, J., Sánchez-Pérez, J.: An extension of the solidarity value for environ-ments with externalities. Int. Game Theory Rev. 19(2), 1750007 (2017). https://doi.org/10.1142/S0219198917500074

    Article  MATH  Google Scholar 

  37. Shapley, L.S.: A value for n-person games. In: Tucker, A.W., Kuhn, H.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  38. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48(3), 787–792 (1954)

    Article  Google Scholar 

  39. Stach, I.: Proper simple game. In: Dowding, K. (ed.) Encyclopedia of Power, pp 537–539. SAGE Publications, Los Angeles (2011). https://doi.org/10.4135/9781412994088.n295

  40. Stach, I.: Power measures and public goods. In: Nguyen, N.T., Kowalczyk, R., Mercik, J. (eds.) Transactions on Computational Collective Intelligence XXIII. LNCS, vol. 9760, pp. 99–110. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52886-0_6

    Chapter  Google Scholar 

  41. Stach, I.: Reformulation of Public Help Index θ using null player free winning coalitions. Group Decis. Negot. 31(2), 317–334 (2021). https://doi.org/10.1007/s10726-021-09769-4

  42. Stach, I., Bertini, C.: Reformulation of some indices using null player free winning coalitions. In: Nguyen, N.T., Kowalczyk, R., Motylska-Kuźma, A., Mercik, J. (eds.) Transactions on Computational Collective Intelligence XXXVI. LNCS, vol. 13010, pp. 108–115. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64563-5_6

    Chapter  Google Scholar 

  43. van den Brink, R.: Null or nullifying players: the difference between the Shapley value and equal division solutions. J. Econ. Theory 136, 767–775 (2007)

    Article  MATH  Google Scholar 

  44. van den Brink, R., Funaki, Y., Ju, Y.: Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values. Soc. Choice Welfare 40, 693–714 (2013). https://doi.org/10.1007/s00355-011-0634-2

    Article  MATH  Google Scholar 

  45. Hu, X.F., Li, D.F.: A new axiomatization of the Shapley-solidarity value for games with a coalition structure. Oper. Res. Lett. 46(2), 163–167 (2018). https://doi.org/10.1016/j.orl.2017.12.006

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabella Stach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stach, I., Bertini, C. (2022). Solidarity Measures. In: Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A. (eds) Transactions on Computational Collective Intelligence XXXVII. Lecture Notes in Computer Science(), vol 13750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66597-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66597-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66596-1

  • Online ISBN: 978-3-662-66597-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics