Abstract
In this paper, we use the algorithm ALBA to reformulate the proof in [1, 2] that over modal compact Hausdorff spaces, the validity of Sahlqvist sequents are preserved from open assignments to arbitrary assignments. In particular, we prove an adapted version of the topological Ackermann lemma based on the Esakia-type lemmas proved in [1, 2].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Notice that the name “frame” occurs in two different ways in the present paper, one is in point-free topology, the other is in modal logic. Here we use the name “Kripke frame” to refer to the notion in modal logic and “frame” to refer to the notion in point-free topology.
- 2.
The condition 3 is well-known in [18].
- 3.
That is, not only finite meets and complete joins are preserved, but also the modal operators, i.e. \(\Box _{\mathbb {B}_{\mathbb {F}}} X=\Box _{\mathcal {T}} X\) and \((\Box _{\mathbb {B}_{\mathbb {F}}} X^c)^c=\Diamond _{\mathcal {T}} X\) for all \(X\in \tau \).
- 4.
For these terminologies, see [10].
References
Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal compact hausdorff spaces. J. Logic Comput. 25(1), 1–35 (2015)
Bezhanishvili, N., Sourabh, S.: Sahlqvist preservation for topological fixed-point logic. J. Logic Comput. 27(3), 679–703 (2017)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)
Britz, C.: Correspondence theory in many-valued modal logics. Master’s thesis, University of Johannesburg, South Africa (2016)
Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Logic Comput. 27(3), 705–748 (2017)
Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based fixed point logics. ArXiv preprint arXiv:1603.06547
Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for intuitionistic modal mu-calculus. Theoret. Comput. Sci. 564, 30–62 (2015)
Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Categories: how i learned to stop worrying and love two sorts. In: Proceedings of 23rd International Workshop on Logic, Language, Information, and Computation, WoLLIC 2016, Puebla, Mexico, 16–19th August 2016, pp. 145–164 (2016)
Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 933–975. Springer, Cham (2014). doi:10.1007/978-3-319-06025-5_36
Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive modal logic. Ann. Pure Appl. Logic 163(3), 338–376 (2012)
Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities (Submitted). ArXiv preprint arXiv:1603.08341
Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics (Submitted). ArXiv preprint arXiv:1603.08515
Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and beyond. J. Logical Algebraic Methods Program. (2016)
Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonicity via pseudo-correspondence: an application of ALBA (Submitted). ArXiv preprint arXiv:1511.04271
Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation (Submitted). ArXiv preprint arXiv:1603.08220
Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Logic Comput. 27(3), 867–900 (2017)
Dunn, J.M.: Positive modal logic. Stud. Logica. 55(2), 301–317 (1995)
Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via correspondence theory for monotone modal logic. J. Logic Comput. 27(3), 639–678 (2017)
Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131(1–3), 65–102 (2005)
Ghilardi, S., Meloni, G.: Constructive canonicity in non-classical logics. Ann. Pure Appl. Logic 86(1), 1–32 (1997)
Goldblatt, R.I.: Metamathematics of modal logic. Bull. Aust. Math. Soc. 10(03), 479–480 (1974)
Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (2016) ArXiv preprint arXiv:1603.08204. doi:10.1093/logcom/exw022
Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)
Johnstone, P.T.: Stone Spaces, vol. 3. Cambridge University Press, Cambridge (1986)
Jónsson, B.: On the canonicity of Sahlqvist identities. Stud. Logica. 53, 473–491 (1994)
Jónsson, B., Tarski, A.: Boolean algebras with operators. Am. J. Math. 74, 127–162 (1952)
Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 93–121. Springer, Heidelebrg (1996). doi:10.1007/978-94-017-2798-3_7
Ma, M., Zhao, Z.: Unified correspondence and proof theory for strict implication. J. Logic Comput. 27(3), 921–960 (2017)
Palmigiano, A., Sourabh, S., Zhao, Z.: Jónsson-style canonicity for ALBA-inequalities. J. Logic Comput. 27(3), 817–865 (2017)
Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Logic Comput. 27(3), 775–816 (2017)
Sambin, G., Vaccaro, V.: A new proof of Sahlqvist’s theorem on modal definability and completeness. J. Symbolic Logic 54(3), 992–999 (1989)
Venema, Y.: Canonical pseudo-correspondence. Adv. Modal Logic 2, 421–430 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Zhao, Z. (2017). Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-662-55386-2_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55385-5
Online ISBN: 978-3-662-55386-2
eBook Packages: Computer ScienceComputer Science (R0)