Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces | SpringerLink
Skip to main content

Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

  • 487 Accesses

Abstract

In this paper, we use the algorithm ALBA to reformulate the proof in [1, 2] that over modal compact Hausdorff spaces, the validity of Sahlqvist sequents are preserved from open assignments to arbitrary assignments. In particular, we prove an adapted version of the topological Ackermann lemma based on the Esakia-type lemmas proved in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Notice that the name “frame” occurs in two different ways in the present paper, one is in point-free topology, the other is in modal logic. Here we use the name “Kripke frame” to refer to the notion in modal logic and “frame” to refer to the notion in point-free topology.

  2. 2.

    The condition 3 is well-known in [18].

  3. 3.

    That is, not only finite meets and complete joins are preserved, but also the modal operators, i.e. \(\Box _{\mathbb {B}_{\mathbb {F}}} X=\Box _{\mathcal {T}} X\) and \((\Box _{\mathbb {B}_{\mathbb {F}}} X^c)^c=\Diamond _{\mathcal {T}} X\) for all \(X\in \tau \).

  4. 4.

    For these terminologies, see [10].

References

  1. Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal compact hausdorff spaces. J. Logic Comput. 25(1), 1–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili, N., Sourabh, S.: Sahlqvist preservation for topological fixed-point logic. J. Logic Comput. 27(3), 679–703 (2017)

    MATH  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  4. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Britz, C.: Correspondence theory in many-valued modal logics. Master’s thesis, University of Johannesburg, South Africa (2016)

    Google Scholar 

  6. Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Logic Comput. 27(3), 705–748 (2017)

    Article  MATH  Google Scholar 

  7. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based fixed point logics. ArXiv preprint arXiv:1603.06547

  8. Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for intuitionistic modal mu-calculus. Theoret. Comput. Sci. 564, 30–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Categories: how i learned to stop worrying and love two sorts. In: Proceedings of 23rd International Workshop on Logic, Language, Information, and Computation, WoLLIC 2016, Puebla, Mexico, 16–19th August 2016, pp. 145–164 (2016)

    Google Scholar 

  10. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 933–975. Springer, Cham (2014). doi:10.1007/978-3-319-06025-5_36

    Google Scholar 

  11. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive modal logic. Ann. Pure Appl. Logic 163(3), 338–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities (Submitted). ArXiv preprint arXiv:1603.08341

  13. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics (Submitted). ArXiv preprint arXiv:1603.08515

  14. Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and beyond. J. Logical Algebraic Methods Program. (2016)

    Google Scholar 

  15. Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonicity via pseudo-correspondence: an application of ALBA (Submitted). ArXiv preprint arXiv:1511.04271

  16. Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation (Submitted). ArXiv preprint arXiv:1603.08220

  17. Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Logic Comput. 27(3), 867–900 (2017)

    Article  MATH  Google Scholar 

  18. Dunn, J.M.: Positive modal logic. Stud. Logica. 55(2), 301–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via correspondence theory for monotone modal logic. J. Logic Comput. 27(3), 639–678 (2017)

    MATH  Google Scholar 

  20. Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131(1–3), 65–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghilardi, S., Meloni, G.: Constructive canonicity in non-classical logics. Ann. Pure Appl. Logic 86(1), 1–32 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldblatt, R.I.: Metamathematics of modal logic. Bull. Aust. Math. Soc. 10(03), 479–480 (1974)

    Article  MATH  Google Scholar 

  23. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (2016) ArXiv preprint arXiv:1603.08204. doi:10.1093/logcom/exw022

  24. Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnstone, P.T.: Stone Spaces, vol. 3. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  26. Jónsson, B.: On the canonicity of Sahlqvist identities. Stud. Logica. 53, 473–491 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jónsson, B., Tarski, A.: Boolean algebras with operators. Am. J. Math. 74, 127–162 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 93–121. Springer, Heidelebrg (1996). doi:10.1007/978-94-017-2798-3_7

    Chapter  Google Scholar 

  29. Ma, M., Zhao, Z.: Unified correspondence and proof theory for strict implication. J. Logic Comput. 27(3), 921–960 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Palmigiano, A., Sourabh, S., Zhao, Z.: Jónsson-style canonicity for ALBA-inequalities. J. Logic Comput. 27(3), 817–865 (2017)

    MATH  Google Scholar 

  31. Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Logic Comput. 27(3), 775–816 (2017)

    MATH  Google Scholar 

  32. Sambin, G., Vaccaro, V.: A new proof of Sahlqvist’s theorem on modal definability and completeness. J. Symbolic Logic 54(3), 992–999 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Venema, Y.: Canonical pseudo-correspondence. Adv. Modal Logic 2, 421–430 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Zhao, Z. (2017). Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics