On Two Concepts of Ultrafilter Extensions of First-Order Models and Their Generalizations | SpringerLink
Skip to main content

On Two Concepts of Ultrafilter Extensions of First-Order Models and Their Generalizations

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10388))

Abstract

There exist two known concepts of ultrafilter extensions of first-order models, both in a certain sense canonical. One of them [1] comes from modal logic and universal algebra, and in fact goes back to [2]. Another one [3, 4] comes from model theory and algebra of ultrafilters, with ultrafilter extensions of semigroups [5] as its main precursor. By a classical fact, the space of ultrafilters over a discrete space is its largest compactification. The main result of [3, 4], which confirms a canonicity of this extension, generalizes this fact to discrete spaces endowed with a first-order structure. An analogous result for the former type of ultrafilter extensions was obtained in [6].

Here we offer a uniform approach to both types of extensions. It is based on the idea to extend the extension procedure itself. We propose a generalization of the standard concept of first-order models in which functional and relational symbols are interpreted rather by ultrafilters over sets of functions and relations than by functions and relations themselves. We provide two specific operations which turn generalized models into ordinary ones, and establish necessary and sufficient conditions under which the latter are the two canonical ultrafilter extensions of some models.

The second author was supported by Grant 16-01-00615 of the Russian Foundation for Basic Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goranko, V.: Filter and ultrafilter extensions of structures: universal-algebraic aspects (2007, preprint)

    Google Scholar 

  2. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I: Amer. J. Math. 73(4), 891–939 (1951). Part II: ibid. 74(1), 127–162 (1952)

    MathSciNet  MATH  Google Scholar 

  3. Saveliev, D.I.: Ultrafilter extensions of models. In: Banerjee, M., Seth, A. (eds.) ICLA 2011. LNCS, vol. 6521, pp. 162–177. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18026-2_14

    Chapter  Google Scholar 

  4. Saveliev, D.I.: On ultrafilter extensions of models. In: Friedman, S.-D., et al. (eds.) The Infinity Project Proceedings CRM Documents 11, Barcelona, pp. 599–616 (2012)

    Google Scholar 

  5. Hindman, N., Strauss, D.: Algebra in the Stone-Čech compactification, 2nd edn. (2012). de Gruyter, W.: Revised and expanded, Berlin-New York

    Google Scholar 

  6. Saveliev, D.I.: On two concepts of ultrafilter extensions of binary relations (2014, preprint)

    Google Scholar 

  7. Čech, E.: On bicompact spaces. Ann. Math. 38(2), 823–844 (1937)

    MathSciNet  MATH  Google Scholar 

  8. Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41, 375–481 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wallman, H.: Lattices and topological spaces. Ann. Math. 39, 112–126 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  10. Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  11. Engelking, R.: General topology. Monogr. Matem. 60, Warszawa (1977)

    Google Scholar 

  12. Kochen, S.: Ultraproducts in the theory of models. Ann. Math. 74(2), 221–261 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frayne, T., Morel, A.C., Scott, D.S.: Reduced direct products. Fund. Math. 51, 195–228 (1962). 53, 117 (1963)

    MathSciNet  MATH  Google Scholar 

  14. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam-London-New York (1973)

    MATH  Google Scholar 

  15. Kanamori, A.: The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Ellis, R.: Lectures on Topological Dynamics. Benjamin, New York (1969)

    MATH  Google Scholar 

  17. Saveliev, D.I.: On idempotents in compact left topological universal algebras. Topol. Proc. 43, 37–46 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Saveliev, D.I.: On Hindman sets (2008, preprint)

    Google Scholar 

  19. Lemmon, E.J.: Algebraic semantics for modal logic. Part II: J. Symb. Logic 31(2), 191–218 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic. Blackwell, Oxford (1977)

    MATH  Google Scholar 

  21. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic. In: Crossley, J.N. (ed.) Algebra and Logic. LNM, vol. 450, pp. 163–173. Springer, Heidelberg (1975). doi:10.1007/BFb0062855

    Chapter  Google Scholar 

  22. van Benthem, J.F.A.K.: Canonical modal logics and ultrafilter extensions. J. Symb. Logic 44(1), 1–8 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Benthem, J.F.A.K.: Notes on modal definability. Notre Dame J. Formal Logic 30(1), 20–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Venema, Y.: Model definability, purely modal. In: Gerbrandy, J., et al. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion on his 50th Birthday, Amsterdam (1999)

    Google Scholar 

  25. Goldblatt, R.I.: Varieties of complex algebras. Ann. Pure Appl. Logic 44, 173–242 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saveliev, D.I.: Ultrafilter extensions of linearly ordered sets. Order 32(1), 29–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We are indebted to Professor Robert I. Goldblatt who provided some useful historical information concerning the \({}^*\)-extension of relations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis I. Saveliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Poliakov, N.L., Saveliev, D.I. (2017). On Two Concepts of Ultrafilter Extensions of First-Order Models and Their Generalizations. In: Kennedy, J., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2017. Lecture Notes in Computer Science(), vol 10388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55386-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55386-2_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55385-5

  • Online ISBN: 978-3-662-55386-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics