Abstract
Deep Learning (DL) represents a key technological innovation in the field of machine learning. Recent advancements have attracted much attention by showing substantial improvements in a wide range of applications such as image recognition, speech recognition, natural language processing and artificial intelligence. In some cases the performance even surpasses human accuracy, which motivated the introduction of a series of DL-based software products and automatization solutions (for example Apple Siri, Google Now, Google Autonomous Driving etc.). The same success also echoes in the research efforts of the medical imaging community. However, in this case several constraints such as data-availability, inherent data noise or lack of labeled data directly affect the pace of advancements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Deutschland
About this paper
Cite this paper
Christlein, V. et al. (2017). Tutorial: Deep Learning Advancing the State-of-the-Art in Medical Image Analysis. In: Maier-Hein, geb. Fritzsche, K., Deserno, geb. Lehmann, T., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2017. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54345-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-54345-0_6
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-54344-3
Online ISBN: 978-3-662-54345-0
eBook Packages: Computer Science and Engineering (German Language)