The Uncertainty Quandary: A Study in the Context of the Evolutionary Optimization in Games and Other Uncertain Environments | SpringerLink
Skip to main content

The Uncertainty Quandary: A Study in the Context of the Evolutionary Optimization in Games and Other Uncertain Environments

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXIV

Abstract

In many optimization processes, the fitness or the considered measure of goodness for the candidate solutions presents uncertainty, that is, it yields different values when repeatedly measured, due to the nature of the evaluation process or the solution itself. This happens quite often in the context of computational intelligence in games, when either bots behave stochastically, or the target game possesses intrinsic random elements, but it shows up also in other problems as long as there is some random component. Thus, it is important to examine the statistical behavior of repeated measurements of performance and, more specifically, the statistical distribution that better fits them. This work analyzes four different problems related to computational intelligence in videogames, where Evolutionary Computation methods have been applied, and the evaluation of each individual is performed by playing the game, and compare them to other problem, neural network optimization, where performance is also a statistical variable. In order to find possible patterns in the statistical behavior of the variables, we track the main features of its distributions, skewness and kurtosis. Contrary to the usual assumption in this kind of problems, we prove that, in general, the values of two features imply that fitness values do not follow a normal distribution; they do present a certain common behavior that changes as evolution proceeds, getting in some cases closer to the standard distribution and in others drifting apart from it. A clear behavior in this case cannot be concluded, other than the fact that the statistical distribution that fitness variables follow is affected by selection in different directions, that parameters vary in a single generation across them, and that, in general, this kind of behavior will have to be taken into account to adequately address uncertainty in fitness in evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment. Evol. Comput. 2(2), 97–122 (1994)

    Article  Google Scholar 

  2. Arnold, D.: Evolution strategies in noisy environments-a survey of existing work. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing. Natural Computing Series, pp. 239–250. Springer, Heidelberg (2001). doi:10.1007/978-3-662-04448-3_11

    Chapter  Google Scholar 

  3. Bhattacharya, M., Islam, R., Mahmood, A.: Uncertainty and evolutionary optimization: a novel approach. In: 2014 IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), pp. 988–993, June 2014

    Google Scholar 

  4. Castillo, P.A., González, J., Merelo-Guervós, J.J., Prieto, A., Rivas, V., Romero, G.: G-Prop-III: global optimization of multilayer perceptrons using an evolutionary algorithm. In: GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, p. 942 (1999)

    Google Scholar 

  5. Castillo, P.A., Merelo-Guervós, J.J., Prieto, A., Rivas, V., Romero, G.: G-Prop: global optimization of multilayer perceptrons using GAs. Neurocomputing 35, 149–163 (2000). http://dx.doi.org/10.1016/S0925-2312(00)00302–7, available from http://geneura.ugr.es/pub/papers/castilloNC.ps.gz

    Article  MATH  Google Scholar 

  6. Castillo, P., Carpio, J., Merelo-Guervós, J.J., Rivas, V., Romero, G., Prieto, A.: Evolving multilayer perceptrons. Neural Process. Lett. 12, 115–127 (2000). http://dx.doi.org/10.1023/A:1009684907680

    Article  MATH  Google Scholar 

  7. Castillo, P., Merelo-Guervós, J.J., Prieto, A., Rojas, I., Romero, G.: Statistical analysis of the parameters of a neuro-genetic algorithm. IEEE Trans. Neural Netw. 13(6), 1374–1394 (2002). http://ieeexplore.ieee.org/iel5/72/22620/01058074.pdf

    Article  Google Scholar 

  8. Cauwet, M.L., Liu, J., Teytaud, O., et al.: Algorithm portfolios for noisy optimization: compare solvers early. In: Learning and Intelligent Optimization Conference (2014)

    Google Scholar 

  9. Chiaberge, M., Merelo, J.J., Reyneri, L.M., Prieto, A., Zocca, L.: A comparison of neural networks, linear controllers, genetic algorithms and simulated annealing for real time control. In: De Facto, B. (ed.)Proceedings of the European Symposium on Artificial Neural Networks, pp. 205–210 (1994). Index available from http://www.dice.ucl.ac.be/esann/proceedings/esann1994/content.htm, available from http://polimage.polito.it/~marcello/articoli/esann.94.jj.pdf, and a scanned version from http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es1994-533-S.pdf

  10. Costa, A., Vargas, P., Tinós, R.: Using explicit averaging fitness for studying the behaviour of rats in a maze. In: Advances in Artificial Life, ECAL, vol. 12, pp. 940–946 (2013)

    Google Scholar 

  11. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  12. Di Mario, E., Navarro, I., Martinoli, A.: A distributed noise-resistant particle swarm optimization algorithm for high-dimensional multi-robot learning. In: Robotics and Automation (ICRA), pp. 5970–5976, May 2015

    Google Scholar 

  13. Esteban-Diaz, J., Handl, J.: Implicit and explicit averaging strategies for simulation-based optimization of a real-world production planning problem. Informatica (03505596) 39(2) (2015)

    Google Scholar 

  14. Fahlman, S.: Faster-learning variations on back-propagation: an empirical study. In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann (1988)

    Google Scholar 

  15. Fernández-Ares, A., Mora, A.M., García-Arenas, M., Guervós, J.J.M., García-Sánchez, P., Castillo, P.A.: Co-evolutionary optimization of autonomous agents in a real-time strategy game. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 374–385. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45523-4_31

    Google Scholar 

  16. Fernández-Ares, A., Mora, A.M., Guervós, J.J.M., García-Sánchez, P., Fernandes, C.: Optimizing player behavior in a real-time strategy game using evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp. 2017–2024. IEEE (2011)

    Google Scholar 

  17. Fernández-Ares, A., Mora, A.M., Merelo, J.J., García-Sánchez, P., Fernandes, C.M.: Optimizing strategy parameters in a game bot. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011. LNCS, vol. 6692, pp. 325–332. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21498-1_41

    Chapter  Google Scholar 

  18. Flores, D.: Rank based evolution of real parameters on noisy fitness functions: evolving a robot neurocontroller. In: 10th Mexican International Conference on Artificial Intelligence (MICAI), pp. 72–76. IEEE (2011)

    Google Scholar 

  19. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. John Wiley, New York (1966)

    MATH  Google Scholar 

  20. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.M.: The Benefit of Sex in Noisy Evolutionary Search. ArXiv e-prints, February 2015

    Google Scholar 

  21. García-Ortega, R.H., García-Sánchez, P., Mora, A.M., Merelo, J.: My life as a sim: evolving unique and engaging life stories using virtual worlds. In: ALIFE 2014: The Fourteenth Conference on the Synthesis and Simulation of Living Systems, vol. 14, pp. 580–587 (2014)

    Google Scholar 

  22. García-Sánchez, P., Tonda, A.P., Mora, A.M., Squillero, G., Guervós, J.J.M.: Towards automatic starcraft strategy generation using genetic programming. In: 2015 IEEE Conference on Computational Intelligence and Games, CIG 2015, Tainan, Taiwan, 31 August – 2 September 2015, pp. 284–291. IEEE (2015)

    Google Scholar 

  23. Goh, C.K., Tan, K.C.: An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 11(3), 354–381 (2007)

    Article  Google Scholar 

  24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  25. Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. The Statistician, 391–399 (1984)

    Google Scholar 

  26. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noisy functions definitions (2009)

    Google Scholar 

  27. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans. Evol. Comput. 13(1), 180–197 (2009)

    Article  Google Scholar 

  28. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  29. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005). Cited by (since 1996) 576

    Article  Google Scholar 

  30. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

    Article  Google Scholar 

  31. Jun-hua, L., Ming, L.: An analysis on convergence and convergence rate estimateof elitist genetic algorithms in noisy environments. Optik Int. J. Light Electron Opt. 124(24), 6780–6785 (2013). http://www.sciencedirect.com/science/article/pii/S0030402613007730

    Article  Google Scholar 

  32. Koza, J.R.: Genetic Programming - on the Programming of Computers by Means of Natural Selection. Complex Adaptive Systems. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  33. Jiménez Laredo, J.L., Dorronsoro, B., Fernandes, C., Merelo, J.J., Bouvry, P.: Oversized populations and cooperative selection: dealing with massive resources in parallel infrastructures. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 444–449. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4_47

    Chapter  Google Scholar 

  34. Liberatore, F., Mora, A., Castillo, P., Merelo, J.: Comparing heterogeneous and homogeneous flocking strategies for the ghost team in the game of Ms. Pac-Man. IEEE Trans. Comput. Intell. AI Games PP(99), 1 (2015)

    Google Scholar 

  35. Liu, J., St-Pierre, D.L., Teytaud, O.: A mathematically derived number ofresamplings for noisy optimization. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp 2014, pp. 61–62. ACM, New York (2014). http://doi.acm.org/10.1145/2598394.2598458

  36. Lucas, S.M.: Ms Pac-Man versus ghost-team competition. In: 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, p. 1, September 2009

    Google Scholar 

  37. Luke, S., Panait, L., Balan, G., Paus, S., Skolicki, Z., Bassett, J., Hubley, R., Chircop, A.: ECJ: a java-based evolutionary computation research system (2006). Downloadable versions and documentation can be found at the following url: http://cs.gmu.edu/eclab/projects/ecj

  38. Merelo, J.J., Castillo, P.A., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I., Cotta, C., Rico, N.: Studying and tackling noisy fitness in evolutionary design of game characters. In: Rosa, A., Merelo, J.J., Filipe, J. (eds.) ECTA 2014 - Proceedings of the International Conference on Evolutionary Computation Theory and Applications, pp. 76–85 (2014)

    Google Scholar 

  39. Merelo, J.J., Chelly, Z., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A.I., Cotta, C., Cuevas, P., Rico, N.: A statistical approach to dealing with noisy fitness in evolutionary algorithms. In: Merelo, J.J., Rosa, A., Cadenas, J.M., Dourado, A., Madani, K., Filipe, J. (eds.) Computational Intelligence. SCI, vol. 620, pp. 79–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-26393-9_6

    Chapter  Google Scholar 

  40. Merelo-Guervós, J.J., Prieto, A., Morán, F.: Optimization of classifiers using genetic algorithms, pp. 91–108. MIT Press (2001). Chap. 4, iSBN:0262162016, draft available from http://geneura.ugr.es/pub/papers/g-lvq-book.ps.gz

  41. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 4(2), 113–131 (1996)

    Article  Google Scholar 

  42. Mora, A.M., Fernández-Ares, A., Merelo-Guervós, J.J., García-Sánchez, P., Fernandes, C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023 (2012)

    Article  MathSciNet  Google Scholar 

  43. Mora, A.M., Montoya, R., Merelo, J.J., Sánchez, P.G., Castillo, P.Á., Laredo, J.L.J., Martínez, A.I., Espacia, A.: Evolving bot AI in unreal\(^{\rm TM}\). In: Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 171–180. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12239-2_18

    Chapter  Google Scholar 

  44. Ong, Y.S., Zhou, Z., Lim, D.: Curse and blessing of uncertainty in evolutionary algorithm using approximation. In: 2006 IEEE Congress on Evolutionary Computation, CEC 2006, pp. 2928–2935. IEEE (2006)

    Google Scholar 

  45. Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey of real-time strategy game AI research and competition in starcraft. IEEE Trans. Comput. Intellig. AI Games 5(4), 293–311 (2013)

    Article  Google Scholar 

  46. Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)

    Article  Google Scholar 

  47. Parras-Gutierrez, E., Arenas, M.G., Rivas, V.M., del Jesus, M.J.: Coevolutionof lags and RBFNs for time series forecasting: L-Co-R algorithm. Soft Comput. 16(6), 919–942 (2012). http://dx.doi.org/10.1007/s00500-011-0784-2

    Article  Google Scholar 

  48. Peñalver, J.G., Merelo, J.J.: Optimizing web page layout using an annealed genetic algorithm as client-side script. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 1018–1027. Springer, Heidelberg (1998). doi:10.1007/BFb0056943. http://www.springerlink.com/link.asp?id=2gqqar9cv3et5nlg

    Chapter  Google Scholar 

  49. Qian, C., Yu, Y., Jin, Y., Zhou, Z.-H.: On the effectiveness of sampling for evolutionary optimization in noisy environments. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 302–311. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10762-2_30

    Google Scholar 

  50. Qian, C., Yu, Y., Zhou, Z.H.: Analyzing evolutionary optimization in noisy environments. CoRR abs/1311.4987 (2013)

    Google Scholar 

  51. Rada-Vilela, J., Johnston, M., Zhang, M.: Population statistics for particle swarm optimization: resampling methods in noisy optimization problems. Swarm Evol. Comput. 17, 37–59 (2014). http://www.sciencedirect.com/science/article/pii/S2210650214000261

    Article  Google Scholar 

  52. Rakshit, P., Konar, A., Nagar, A.: Artificial bee colony induced multi-objective optimization in presence of noise. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3176–3183, July 2014

    Google Scholar 

  53. Rattray, M., Shapiro, J.: Noisy fitness evaluation in genetic algorithms and the dynamics of learning, pp. 117–139 (1998)

    Google Scholar 

  54. Rudolph, G.: A partial order approach to noisy fitness functions. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, vol. 1, pp. 318–325 (2001)

    Google Scholar 

  55. Squillero, G.: MicroGP-an evolutionary assembly program generator. Genet. Program Evolvable Mach. 6(3), 247–263 (2005). http://dx.doi.org/10.1007/s10710-005-2985-x

    Article  Google Scholar 

  56. Stroud, P.D.: Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations. IEEE Trans. Evol. Comput. 5(1), 66–77 (2001)

    Article  Google Scholar 

  57. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by projects TIN2014-56494-C4-3-P (Spanish Ministry of Economy and Competitiveness), SPIP2014-01437 (Dirección General de Tráfico), PRY142/14 (Fundación Pública Andaluza Centro de Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación), PROY-PP2015-06 (Plan Propio 2015 UGR), and project CEI2015-MP-V17 of the Microprojects program 2015 from CEI BioTIC Granada. We would like also to thank the anonymous reviewers for this paper, for suggesting new readings and avenues of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Merelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Merelo, J.J. et al. (2016). The Uncertainty Quandary: A Study in the Context of the Evolutionary Optimization in Games and Other Uncertain Environments. In: Nguyen, N., Kowalczyk, R., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXIV. Lecture Notes in Computer Science(), vol 9770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53525-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53525-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53524-0

  • Online ISBN: 978-3-662-53525-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics