Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision Using Well-Quasi Orderings | SpringerLink
Skip to main content

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision Using Well-Quasi Orderings

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

The notion of deciding a distributed language \(\mathcal {L} \) is of growing interest in various distributed computing settings. Each process \(p_i\) is given an input value \(x_i\), and the processes should collectively decide whether their set of input values \(x=(x_i)_i\) is a valid state of the system w.r.t. to some specification, i.e., if \(x\in \mathcal {L} \). In non-deterministic distributed decision each process \(p_i\) gets a local certificate \(c_i\) in addition to its input \(x_i\). If the input \(x\in \mathcal {L} \) then there exists a certificate \(c=(c_i)_i\) such that the processes collectively accept x, and if \(x\not \in \mathcal {L} \), then for every c, the processes should collectively reject x. The collective decision is expressed by the set of opinions emitted by the processes.

In this paper we study non-deterministic distributed decision in systems where asynchronous processes may crash. It is known that the number of opinions needed to deterministically decide a language can grow with n, the number of processes in the system. We prove that every distributed language \(\mathcal {L} \) can be non-deterministically decided using only three opinions, with certificates of size \(\lceil \log \alpha (n)\rceil +1\) bits, where \(\alpha \) grows at least as slowly as the inverse of the Ackerman function. The result is optimal, as we show that there are distributed languages that cannot be decided using just two opinions, even with arbitrarily large certificates.

To prove our upper bound, we introduce the notion of distributed encoding of the integers, that provides an explicit construction of a long bad sequence in the well-quasi-ordering \((\{0,1\}^*,\le _*)\) controlled by the successor function. Thus, we provide a new class of applications for well-quasi-orderings that lies outside logic and complexity theory. For the lower bound we use combinatorial topology techniques.

Supported by ECOS-CONACYT Nord grant M12A01, ANR project DISPLEXITY, INRIA project GANG and UNAM-PAPIIT grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The theory of read/write wait-free computation is of considerable significance, because results in this model can be transferred to other message-passing and f-resilient models e.g. [2, 17].

  2. 2.

    Such a subword is of the form \(w'=(w_{i_j})_{j=1,\dots ,k}\) with \(i_j<i_{j+1}\) for \(j\in [1,k)\).

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 18–32. Springer, Heidelberg (2014)

    Google Scholar 

  5. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM 54(5), 88–98 (2011)

    Article  Google Scholar 

  7. Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with dickson’s lemma. In: Proceedings of 26th IEEE Symposium on Logic in Computer Science (LICS), pp. 269–278 (2011)

    Google Scholar 

  9. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)

    Article  MATH  Google Scholar 

  12. Fraigniaud, P., Rajsbaum, S., Travers, C.: Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision Using Well-Quasi Orderings Technical report #hal-01237873 (2015). https://hal.archives-ouvertes.fr/hal-01237873v1

  13. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg (2014)

    Google Scholar 

  14. Fraigniaud, P., Rajsbaum, S., Roy, M., Travers, C.: The opinion number of set-agreement. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 155–170. Springer, Heidelberg (2014)

    Google Scholar 

  15. Göös, M., Suomela, J.: Locally checkable proofs. In: Proceedings of 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)

    Google Scholar 

  16. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 319–333. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann (2013)

    Google Scholar 

  18. Jeanmougin, M.: Checkability in Asynchronous Error-Prone Distributed Computing Using Few Values. Master Thesis Report, University Paris Diderot (2013)

    Google Scholar 

  19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)

    Article  MATH  Google Scholar 

  20. Kruskal, J.: The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theor. A 13(3), 297–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milner, E.: Basic WQO- and BQO-theory. In: Rival, I. (ed.) The Role of Graphs in the Theory of Ordered Sets and Its Applications. NATO ASI Series, vol. 147, pp. 487–502. Springer, Netherlands (1985)

    Google Scholar 

  22. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifications in distributed systems. In: Proceedings of IEEE Parallel and Distributed Processing Symposium (IPDPS), pp. 494–503 (2015)

    Google Scholar 

  23. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory. Technical report Hal#cel-00727025 (2013). https://cel.archives-ouvertes.fr/cel-00727025v2

  25. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett. 83(5), 251–261 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, pp. 67–69 (1949)

    Google Scholar 

Download references

Acknowledgment

The third author is thankful to Philippe Duchon and Patrick Dehornoy for fruitful discussions on wqos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rajsbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Rajsbaum, S., Travers, C. (2016). Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision Using Well-Quasi Orderings. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics