Improved Approximation Algorithms for Capacitated Fault-Tolerant k-Center | SpringerLink
Skip to main content

Improved Approximation Algorithms for Capacitated Fault-Tolerant k-Center

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

In the k-center problem, given a metric space V and a positive integer k, one wants to select k elements (centers) of V and an assignment from V to centers, minimizing the maximum distance between an element of V and its assigned center. One of the most general variants is the capacitated \(\alpha \) -fault-tolerant k -center, where centers have a limit on the number of assigned elements, and, if \(\alpha \) centers fail, there is a reassignment from V to non-faulty centers. In this paper, we present a new approach to tackle fault tolerance, by selecting and pre-opening a set of backup centers, then solving the obtained residual instance. For the \(\{0,L\}\)-capacitated case, we give approximations with factor 6 for the basic problem, and 7 for the so called conservative variant, when only clients whose centers failed may be reassigned. Our algorithms improve on the previously best known factors of 9 and 17, respectively. Moreover, we consider the case with general capacities. Assuming \(\alpha \) is constant, our method leads to the first approximations for this case.

Partially supported by CAPES, CNPq (grants 308523/2012-1, 477203/2012-4, and 456792/2014-7), FAPESP (grants 2013/03447-6 and 2014/14209-1), and MaCLinC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, H.-C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality of trees for capacitated k-center. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 52–63. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15(3), 385–415 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaudhuri, S., Garg, N., Ravi, R.: The \(p\)-neighbor \(k\)-center problem. Inf. Process. Lett. 65(3), 131–134 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chechik, S., Peleg, D.: The fault-tolerant capacitated \(k\)-center problem. Theor. Comput. Sci. 566, 12–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for \(k\)-centers with non-uniform hard capacities. In: IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 273–282 (2012)

    Google Scholar 

  6. Cygan, M., Kociumaka, T.: Constant factor approximation for capacitated \(k\)-center with outliers. In: 31st International Symposium on Theoretical Aspects of ComputerScience (STACS), vol. 25, pp. 251–262 (2014)

    Google Scholar 

  7. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC), pp. 434–444. ACM, New York (1988)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hall, P.: On representatives of subsets. J. London Math. Soc 10(1), 26–30 (1935)

    MATH  Google Scholar 

  11. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the \(k\)-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  13. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Appl. Math. 1(3), 209–215 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khuller, S., Sussmann, Y.J.: The capacitated \(k\)-center problem. SIAM J. Discrete Math. 13(3), 403–418 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant \(k\)-center problems. Theor. Comput. Sci. 242(1–2), 237–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krumke, S.: On a generalization of the \(p\)-center problem. Inf. Process. Lett. 56(2), 67–71 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehilton L. C. Pedrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandes, C.G., de Paula, S.P., Pedrosa, L.L.C. (2016). Improved Approximation Algorithms for Capacitated Fault-Tolerant k-Center. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics