A Middle Curve Based on Discrete Fréchet Distance | SpringerLink
Skip to main content

A Middle Curve Based on Discrete Fréchet Distance

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

Given a set of polygonal curves we seek to find a middle curve that represents the set of curves. We require that the middle curve consists of points of the input curves and that it minimizes the discrete Fréchet distance to the input curves. We present algorithms for three different variants of this problem: computing an ordered middle curve, computing an ordered and restricted middle curve, and computing an unordered middle curve.

This work was partially supported by research grant AL 253/8-1 from Deutsche Forschungsgemeinschaft (German Science Association), and by the National Science Foundation under grant CCF-1301911. Work by Ahn and Oh was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by clustering subtrajectories. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 644–655. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Buchin, K., Buchin, M., van Kreveld, M., Löffler, M., Silveira, R.I., Wenk, C., Wiratma, L.: Median trajectories. Algorithmica 66(3), 595–614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dumitrescu, A., Rote, G.: On the Fréchet distance of a set of curves. In: Proceedings of the 16th Canadian Conference on Computational Geometry, CCCG 2004, Concordia University, Montréal, Québec, Canada, pp. 162–165, 9–11 August 2004

    Google Scholar 

  5. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical report, Technische Universität Wien (1994)

    Google Scholar 

  6. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM Trans. Algorithms 10(1), 3:1–3:22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 1, pp. 461–465. IEEE Computer Society (2007)

    Google Scholar 

  8. van Kreveld, M.J., Löffler, M., Staals, F.: Central trajectories. In: 31st European Workshop on Computational Geometry (EuroCG), Book of Abstracts, pp. 129–132 (2015)

    Google Scholar 

  9. Zhu, H., Luo, J., Yin, H., Zhou, X., Huang, J.Z., Zhan, F.B.: Mining trajectory corridors using Fréchet distance and meshing grids. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 228–237. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was initiated at the 17th Korean Workshop on Computational Geometry. We thank the organizers and all participants for the stimulating atmosphere. In particular we thank Fabian Stehn and Wolfgang Mulzer for discussing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjin Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, HK., Alt, H., Buchin, M., Oh, E., Scharf, L., Wenk, C. (2016). A Middle Curve Based on Discrete Fréchet Distance. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics