On the Total Number of Bends for Planar Octilinear Drawings | SpringerLink
Skip to main content

On the Total Number of Bends for Planar Octilinear Drawings

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

An octilinear drawing of a planar graph is one in which each edge is drawn as a sequence of horizontal, vertical and diagonal at \(45^\circ \) line-segments. For such drawings to be readable, special care is needed in order to keep the number of bends small. As the problem of finding planar octilinear drawings of minimum number of bends is NP-hard, in this paper we focus on upper and lower bounds. From a recent result of Keszegh et al. on the slope number of planar graphs, we can derive an upper bound of \(4n-10\) bends for 8-planar graphs with n vertices. We considerably improve this general bound and corresponding previous ones for triconnected 4-, 5- and 6-planar graphs. We also derive non-trivial lower bounds for these three classes of graphs by a technique inspired by the network flow formulation of Tamassia.

This work has been supported by DFG grant Ka812/17-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note, however, that not all of them can be simultaneously be occupied due to the degree restriction.

  2. 2.

    Except for vertex \(v_1\) of the first partition \(P_0\) of \(\varPi \), which has no outgoing blue edge.

References

  1. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. J. Graph Algorithms Appl. 15(1), 97–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar octilinear drawings. Arxiv report arxiv.org/abs/1512.04866 (2014)

  4. Biedl, T.C.: New lower bounds for orthogonal graph drawings. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 28–39. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. J. Graph Algorithms Appl. 8(1), 89–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Giacomo, E., Liotta, G., Montecchiani, F.: The Planar Slope Number of Subcubic Graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Felsner, S.: Schnyder woods or how to draw a planar graph? In: Geometric Graphs and Arrangements, pp. 17–42. Advanced Lectures in Mathematics, Vieweg/Teubner Verlag (2004)

    Google Scholar 

  10. Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: the 4M-algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kant, G.: Drawing planar graphs using the lmc-ordering. In: FOCS, pp. 101–110. IEEE (1992)

    Google Scholar 

  13. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 263–276. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Nöllenburg, M.: Automated drawings of metro maps. Technical Report 2005–25, Fakultät für Informatik, Universität Karlsruhe (2005)

    Google Scholar 

  17. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal drawings of graphs. Inf. Process. Lett. 39(1), 35–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bekos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bekos, M.A., Kaufmann, M., Krug, R. (2016). On the Total Number of Bends for Planar Octilinear Drawings. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics