A DNA Code Converter Model for Decimal Numbers Displaying | SpringerLink
Skip to main content

A DNA Code Converter Model for Decimal Numbers Displaying

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1965 Accesses

Abstract

DNA has recently emerged as a powerful and novel material for creating nano-scale electronic architectures and devices. Based on DNA strand displacement (DSD) reactions, sophisticated multilayered DNA molecular circuits have been rationally designed to perform different functions. In this paper, a code converter circuit, which can be used to compute logic states of a seven-segment digital tube, is designed for decimal numbers displaying. In addition, the logic circuit is further translated into its correspondingly dual-rail circuit and seesaw cascade circuit. The simulation results show that our logic circuits are effective and feasible for decimal numbers displaying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaver, D.: Computing with DNA. J. Comput. Biol. 3, 254–257 (1996)

    Google Scholar 

  2. Xu, J., Qiang, X., Yang, Y., Wang, B., Yang, D., Luo, L., Pan, L., Wang, S.: An unenumerative DNA computing model for vertex coloring problem. IEEE Trans. Nanobiosci. 10(2), 94–98 (2011)

    Article  Google Scholar 

  3. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  4. Jung, C., Ellington, A.D.: Diagnostic applications of nucleic acid circuits. Acc. Chem. Res. 47(6), 1825–1835 (2014)

    Article  Google Scholar 

  5. Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 114–131. Springer, Heidelberg (2014)

    Google Scholar 

  6. Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4, 1965 (2013)

    Google Scholar 

  7. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9, e108856 (2014)

    Article  Google Scholar 

  8. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

  9. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. Roy. Soc. Interface 8, 1281–1297 (2011)

    Article  Google Scholar 

  10. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  11. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gaber, R., Lebar, T., Majerle, A., Šter, B., Dobnikar, A., Benčina, M., Jerala, R.: Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat. Chem. Biol. 10(3), 203–208 (2014)

    Article  Google Scholar 

  13. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124(14), 3555–3561 (2002)

    Article  Google Scholar 

  14. Zeng, X., Song, T., Zhang, X., Pan, L.: Performing four basic arithmetic operations with spiking neural P systems. IEEE Trans. Nanobiosci. 11(4), 366–374 (2012)

    Article  Google Scholar 

  15. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E., Stefanovic, D.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  16. Wang, Y., Tian, G., Hou, H., Ye, M., Cui, G.: Simple logic computation based on the DNA strand displacement. J. Comput. Theor. Nanosci. 11(9), 1975–1982 (2014)

    Article  Google Scholar 

  17. Srinivas, N., Ouldridge, T.E., Šulc, P., Schaeffer, J.M., Yurke, B., Louis, A.A., Doye, J.P.K., Winfree, E.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41(22), 10641–10658 (2013)

    Article  Google Scholar 

  18. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  19. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Heidelberg (2014)

    Google Scholar 

  20. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  21. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 2816–2829 (2015). doi:10.1109/TNNLS.2015.2396940

    Article  MathSciNet  Google Scholar 

  22. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  23. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC (Grant Nos.U1304620, 61472372, 61272022), Innovation Scientists and Technicians Troop Construction Projects of Henan (Grant No. 124200510017), and Innovation Scientists and Technicians Troop Construction Projects of Zhengzhou (Grant No. 131PLJRC648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zicheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Zhang, W., Wang, Y., Cui, G. (2015). A DNA Code Converter Model for Decimal Numbers Displaying. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics