Strong Inapproximability of the Shortest Reset Word | SpringerLink
Skip to main content

Strong Inapproximability of the Shortest Reset Word

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

The Černý conjecture states that every n-state synchronizing automaton has a reset word of length at most \((n-1)^2\). We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is \(\mathrm {NP}\)-hard and \(\mathrm {coNP}\)-hard, and complete for the \(\mathrm {DP}\) class, and that approximating the length of the shortest reset word within a factor of \(O(\log n)\) is \(\mathrm {NP}\)-hard [Gerbush and Heeringa, CIAA’10], even for the binary alphabet [Berlinkov, DLT’13]. We significantly improve on these results by showing that, for every \(\varepsilon >0\), it is \(\mathrm {NP}\)-hard to approximate the length of the shortest reset word within a factor of \(n^{1-\varepsilon }\). This is essentially tight since a simple O(n)-approximation algorithm exists.

Supported by the NCN grant 2011/01/D/ST6/07164.

P. Gawrychowski—Currently holding a post-doctoral position at Warsaw Center of Mathematics and Computer Science.

D. Straszak—Part of the work was carried out while the author was a student at Institute of Computer Science, University of Wrocław, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Amortized free bit complexity is a parameter of a PCP verifier which essentially corresponds to the ratio between the free bit complexity and the logarithm of error probability.

References

  1. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theor. Comput. Sci. 330(1), 3–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–towards tight results. SIAM J. Comput. 27, 804–915 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlinkov, M.V.: Approximating the minimum length of synchronizing words is hard. Theor. Comp. Sys. 54(2), 211–223 (2014)

    Article  MathSciNet  Google Scholar 

  7. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer, Heidelberg (2014)

    Google Scholar 

  8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals of a directed graph. Discrete Mathematics & Theoretical Computer Science 15(3), 61–72 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Hastad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS 1996, pp. 627–636 (1996)

    Google Scholar 

  13. Hastad, J., Khot, S.: Query efficient PCPs with perfect completeness. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 610–619, October 2001

    Google Scholar 

  14. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295, 223–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Pin, J.: On two combinatorial problems arising from automata theory. In: Combinatorial Mathematics Proceedings of the International Colloquium on Graph Theory and Combinatorics, vol. 75, pp. 535–548. North-Holland (1983)

    Google Scholar 

  17. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput. Sci. 172(1–2), 273–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)

    Article  MATH  Google Scholar 

  19. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Straszak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gawrychowski, P., Straszak, D. (2015). Strong Inapproximability of the Shortest Reset Word. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics