Log-Concavity and Lower Bounds for Arithmetic Circuits | SpringerLink
Skip to main content

Log-Concavity and Lower Bounds for Arithmetic Circuits

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

  • 994 Accesses

Abstract

One question that we investigate in this paper is, how can we build log-concave polynomials using sparse polynomials as building blocks? More precisely, let \(f = \sum _{i = 0}^d a_i X^i \in \mathbb {R}^+[X]\) be a polynomial satisfying the log-concavity condition \(a_i^2 > \tau a_{i-1}a_{i+1}\) for every \(i \in \{1,\ldots ,d-1\},\) where \(\tau > 0\). Whenever f can be written under the form \(f = \sum _{i = 1}^k \prod _{j = 1}^m f_{i,j}\) where the polynomials \(f_{i,j}\) have at most t monomials, it is clear that \(d \leqslant k t^m\). Assuming that the \(f_{i,j}\) have only non-negative coefficients, we improve this degree bound to \(d = \mathcal O(k m^{2/3} t^{2m/3} \mathrm{log^{2/3}}(kt))\) if \(\tau > 1\), and to \(d \leqslant kmt\) if \(\tau = d^{2d}\).

This investigation has a complexity-theoretic motivation: we show that a suitable strengthening of the above results would imply a separation of the algebraic complexity classes \(\mathsf {VP}\) and \(\mathsf {VNP}\). As they currently stand, these results are strong enough to provide a new example of a family of polynomials in \(\mathsf {VNP}\) which cannot be computed by monotone arithmetic circuits of polynomial size.

This work was supported by ANR project CompA (project number: ANR-13-BS02-0001-01).

I. García-Marco and P. Koiran — UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, M., Vinay, V.: Arithmetic circuits: a chasm at depth four. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25–28, 2008, Philadelphia, PA, USA, pp. 67–75 (2008)

    Google Scholar 

  2. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  3. Eisenbrand, F., Pach, J., Rothvoß, T., Sopher, N.B.: Convexly independent subsets of the Minkowski sum of planar point sets. Electron. J. Combin., 15(1): Note 8, 4 (2008)

    Google Scholar 

  4. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

    MATH  Google Scholar 

  5. Hrubes, P.: A note on the real \(\tau \)-conjecture and the distribution of complex roots. Theo. Comput. 9(10), 403–411 (2013). http://eccc.hpi-web.de/report/2012/121/

    MathSciNet  MATH  Google Scholar 

  6. Hutchinson, J.I.: On a remarkable class of entire functions. Trans. Amer. Math. Soc. 25(3), 325–332 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM (JACM) 29(3), 874–897 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karavelas, M.I., Tzanaki, E.: The maximum number of faces of the Minkowski sum of two convex polytopes. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 11–28 (2012)

    Google Scholar 

  9. Koiran, P.: Valiant’s model and the cost of computing integers. Comput. Complex. 13, 131–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koiran, P.: Shallow circuits with high-powered inputs. In: Proceedings of the Second Symposium on Innovations in Computer Science (ICS 2011) (2011). http://arxiv.org/abs/1004.4960

  11. Koiran, P.: Arithmetic circuits: the chasm at depth four gets wider. Theoret. Comput. Sci. 448, 56–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koiran, P., Portier, N., Tavenas, S., Thomassé, S.: A \(\tau \)-conjecture for Newton polygons. Found. Comput. Math. 15(1), 185–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurtz, D.C.: A sufficient condition for all the roots of a polynomial to be real. Amer. Math. Monthly 99(3), 259–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC 1979, pp. 249–261. ACM, New York, NY, USA (1979)

    Google Scholar 

  16. Valiant, L.G.: Negation can be exponentially powerful. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 189–196. ACM (1979). Journal version in Theo. Comput. Sci. 12(3), 303–314 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio García-Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Marco, I., Koiran, P., Tavenas, S. (2015). Log-Concavity and Lower Bounds for Arithmetic Circuits. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics