Algorithmic Applications of Tree-Cut Width | SpringerLink
Skip to main content

Algorithmic Applications of Tree-Cut Width

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9235))

Abstract

The recently introduced graph parameter tree-cut width plays a similar role with respect to immersions as the graph parameter treewidth plays with respect to minors. In this paper we provide the first algorithmic applications of tree-cut width to hard combinatorial problems. Tree-cut width is known to be lower-bounded by a function of treewidth, but it can be much larger and hence has the potential to facilitate the efficient solution of problems which are not known to be fixed-parameter tractable (FPT) when parameterized by treewidth. We introduce the notion of nice tree-cut decompositions and provide FPT algorithms for the showcase problems Capacitated Vertex Cover, Capacitated Dominating Set and Imbalance parameterized by the tree-cut width of an input graph G. On the other hand, we show that List Coloring, Precoloring Extension and Boolean CSP (the latter parameterized by the tree-cut width of the incidence graph) are W[1]-hard and hence unlikely to be fixed-parameter tractable when parameterized by tree-cut width.

R. Ganian and S. Szeider — Research supported by the FWF Austrian Science Fund (X-TRACT, P26696).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A graph H is an immersion of a graph G if H can be obtained from G by applications of vertex deletion, edge deletion, and edge lifting, i.e., replacing two incident edges by a single edge which joins the two vertices not shared by the two edges.

  2. 2.

    We call them “nice” as they serve a similar purpose as the nice tree decompositions [13], although the definitions are completely unrelated.

References

  1. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. DAM 148(1), 27–48 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. i. Interval graphs. Discrete Math. 100(1–3), 267–279 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, New York (2000)

    MATH  Google Scholar 

  4. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013)

    Book  MATH  Google Scholar 

  6. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congressus Numerantium 26, 125–157 (1979)

    MATH  Google Scholar 

  7. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grohe, M., Kawarabayashi, K.-I., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: STOC 2011–Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 479–488. ACM, New York (2011)

    Google Scholar 

  11. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, E., Oum, S.-I., Paul, C., Sau, I., Thilikos, D.: FPT 2-approximation for constructing tree-cut decomposition (2014, Submitted) Manuscript

    Google Scholar 

  13. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  14. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lokshtanov, D., Misra, N., Saurabh, S.: Imbalance is fixed parameter tractable. Inf. Process. Lett. 113(19–21), 714–718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discrete Math. 28(1), 503–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge Philos. Soc. 59, 833–835 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. European J. Combin. 27(6), 1024–1041 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theo. Ser. B 110, 47–66 (2015). http://arxiv.org/abs/1302.3867 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ganian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganian, R., Kim, E.J., Szeider, S. (2015). Algorithmic Applications of Tree-Cut Width. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48054-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48054-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48053-3

  • Online ISBN: 978-3-662-48054-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics