Scheduling Bidirectional Traffic on a Path | SpringerLink
Skip to main content

Scheduling Bidirectional Traffic on a Path

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

  • 2739 Accesses

Abstract

We study the fundamental problem of scheduling bidirectional traffic along a path composed of multiple segments. The main feature of the problem is that jobs traveling in the same direction can be scheduled in quick succession on a segment, while jobs in opposing directions cannot cross a segment at the same time. We show that this tradeoff makes the problem significantly harder than the related flow shop problem, by proving that it is \(\mathsf {NP}\)-hard even for identical jobs. We complement this result with a PTAS for a single segment and non-identical jobs. If we allow some pairs of jobs traveling in different directions to cross a segment concurrently, the problem becomes \(\mathsf {APX}\)-hard even on a single segment and with identical jobs. We give polynomial algorithms for the setting with restricted compatibilities between jobs on a single and any constant number of segments, respectively.

M. Klimm and E. Lübbecke—This research was carried out in the framework of Matheon supported by Einstein Foundation Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proc. 40th Symposium on Foundations of Computer Science (FOCS), pp. 32–43 (1999)

    Google Scholar 

  2. Antoniadis, A., Barcelo, N., Cole, D., Fox, K., Moseley, B., Nugent, M., Pruhs, K.: Packet forwarding algorithms in a line network. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 610–621. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Complexity (ECCC) 10(49) (2003)

    Google Scholar 

  4. Brucker, P., Knust, S., Wang, G.: Complexity results for flow-shop problems with a single server. European J. Oper. Res. 165, 398–407 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bundesamt für Seeschifffahrt und Hydrographie (BSH). German Traffic Regulations for Navigable Maritime Waterways. Hamburg and Rostock, Germany (2013)

    Google Scholar 

  6. Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 848–861. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Disser, Y., Klimm, M., Lübbecke, E.: Scheduling bidirectional traffic on a path. arXiv:1504.07129 (2015)

  8. Fishkin, A.V., Jansen, K., Mastrolilli, M.: On minimizing average weighted completion time: A PTAS for the job shop problem with release dates. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 319–328. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 353–366. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103 (1972)

    Google Scholar 

  13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: algorithms and complexity. In: Handbooks in Operations Research and Management Science, vol. 4, pp. 445–522 (1993)

    Google Scholar 

  14. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in \(o\)(congestion+dilation) steps. Combinatorica 14(2), 167–186 (1994)

    Google Scholar 

  15. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Google Scholar 

  16. Lübbecke, E., Lübbecke, M.E., Möhring, R.H.: Ship traffic optimization for the Kiel Canal. Technical Report 4681, Optimization. Online 12 (2014)

    Google Scholar 

  17. Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.: Railway track allocation: models and methods. OR Spectrum 33(4), 843–883 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peis, B., Wiese, A.: Universal packet routing with arbitrary bandwidths and transit times. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 362–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European J. Oper. Res. 120(2), 228–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Queyranne, M., Sviridenko, M.: New and improved algorithms for minsum shop scheduling. In: Proc. 11th Symposium on Discrete Algorithms (SODA), pp. 871–878 (2000)

    Google Scholar 

  21. Scheideler, C.: Offline routing protocols. In: Universal Routing Strategies for Interconnection Networks, pp. 57–71 (1998)

    Google Scholar 

  22. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Lübbecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Disser, Y., Klimm, M., Lübbecke, E. (2015). Scheduling Bidirectional Traffic on a Path. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics