Abstract
The edit distance between two words \(w_1, w_2\) is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform \(w_1\) to \(w_2\). The edit distance generalizes to languages \(\mathcal {L}_1, \mathcal {L}_2\), where the edit distance is the minimal number k such that for every word from \(\mathcal {L}_1\) there exists a word in \(\mathcal {L}_2\) with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to pushdown automata is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k.
This research was funded in part by the European Research Council (ERC) under grant agreement 267989 (QUAREM), by the Austrian Science Fund (FWF) projects S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), FWF Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and MSR faculty fellows award.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free languages. SIAM J. of Computing 1, 305–312 (1972)
Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS 2011, pp. 335–344 (2011)
Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)
Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981). http://doi.acm.org/10.1145/322234.322243
Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4) (2010)
Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for pushdown automata. CoRR abs/1504.08259 (2015). http://arxiv.org/abs/1504.08259
Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. CoRR abs/1504.06117 (2015). http://arxiv.org/abs/1504.06117 (to appear at LICS 2015)
Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC 2014, pp. 303–312 (2014)
Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-compressed strings. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229–236. Springer, Heidelberg (2012)
Henzinger, T.A., Otop, J.: From model checking to model measuring. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Adison-Wesley Publishing Company, Reading (1979)
Karp, R.: Mapping the genome: some combinatorial problems arising in molecular biology. In: STOC 93, pp. 278–285. ACM (1993)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady. 10, 707–710 (1966)
Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)
Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Intl. J. of Foundations of Comp. Sci. 14, 957–982 (2003)
Okuda, T., Tanaka, E., Kasai, T.: A method for the correction of garbled words based on the levenshtein metric. IEEE Trans. Comput. 25, 172–178 (1976)
Pighizzini, G.: How hard is computing the edit distance? Information and Computation 165, 1–13 (2001)
Saha, B.: The dyck language edit distance problem in near-linear time. In: FOCS 2014, pp. 611–620 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J. (2015). Edit Distance for Pushdown Automata. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-662-47666-6_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47665-9
Online ISBN: 978-3-662-47666-6
eBook Packages: Computer ScienceComputer Science (R0)