Edit Distance for Pushdown Automata | SpringerLink
Skip to main content

Edit Distance for Pushdown Automata

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9135))

Included in the following conference series:

Abstract

The edit distance between two words \(w_1, w_2\) is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform \(w_1\) to \(w_2\). The edit distance generalizes to languages \(\mathcal {L}_1, \mathcal {L}_2\), where the edit distance is the minimal number k such that for every word from \(\mathcal {L}_1\) there exists a word in \(\mathcal {L}_2\) with edit distance at most k. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to pushdown automata is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for deciding whether, for a given threshold k, the edit distance from a pushdown automaton to a finite automaton is at most k.

This research was funded in part by the European Research Council (ERC) under grant agreement 267989 (QUAREM), by the Austrian Science Fund (FWF) projects S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), FWF Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and MSR faculty fellows award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A., Peterson, T.: A minimum distance error-correcting parser for context-free languages. SIAM J. of Computing 1, 305–312 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: LICS 2011, pp. 335–344 (2011)

    Google Scholar 

  3. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981). http://doi.acm.org/10.1145/322234.322243

    Article  MATH  MathSciNet  Google Scholar 

  5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4) (2010)

    Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J.: Edit distance for pushdown automata. CoRR abs/1504.08259 (2015). http://arxiv.org/abs/1504.08259

  7. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. CoRR abs/1504.06117 (2015). http://arxiv.org/abs/1504.06117 (to appear at LICS 2015)

  8. Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC 2014, pp. 303–312 (2014)

    Google Scholar 

  9. Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-compressed strings. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229–236. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Adison-Wesley Publishing Company, Reading (1979)

    MATH  Google Scholar 

  12. Karp, R.: Mapping the genome: some combinatorial problems arising in molecular biology. In: STOC 93, pp. 278–285. ACM (1993)

    Google Scholar 

  13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady. 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  14. Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Intl. J. of Foundations of Comp. Sci. 14, 957–982 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Okuda, T., Tanaka, E., Kasai, T.: A method for the correction of garbled words based on the levenshtein metric. IEEE Trans. Comput. 25, 172–178 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pighizzini, G.: How hard is computing the edit distance? Information and Computation 165, 1–13 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saha, B.: The dyck language edit distance problem in near-linear time. In: FOCS 2014, pp. 611–620 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Henzinger, T.A., Ibsen-Jensen, R., Otop, J. (2015). Edit Distance for Pushdown Automata. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47666-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47666-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47665-9

  • Online ISBN: 978-3-662-47666-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics