Abstract
The Web contains much information for the tourism, such as impressions and sentiments about sightseeing areas. Analyzing the information is a significant task for tourism informatics. A useful target resource for the analysis is information on Twitter. However, all tweets with keywords, which are related to facilities and events for tourism, might not be tourism information. In this paper, we propose a method for estimating on-site likelihood of tweets. The task is to identify whether each tweet has high on-site likelihood or not. We introduce a filtering process and a machine learning technique for the task. In addition, we apply previous and next tweets for the identification task, as context information. Experimental results show the effectiveness of the combination method and context information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Saito, H.: Analysis of tourism informatics on web. J. Jpn. Soc. Artif. Intell. 26(3), 234–240 (2011)
Shimada, K., Inoue, S., Maeda, H., Endo, T.: Analyzing tourism information on twitter for a local city. In: Proceedings of SSNE2011, pp. 61–66 (2011)
Kori, H., Hattori, S., Tezuka, T., Tanaka, K.: Automatic generation of multimedia tour guide from local blogs. In: 13th International Multimedia Modeling Conference, MMM 2007, pp. 690–699 (2006)
Okumura, M.: Microblog mining (in Japanese). IEICE Tech. Rep. 111(427), NLC2011-59, 19–24 (2012)
Shimada, K., Inoue, S., Endo, T.: On-site likelihood identification of tweets for tourism information analysis. In: Proceedings of 3rd IIAI International Conference (2012)
Inui, K., Abe, S., Morita, H., Eguchi, M., Sumida, A., Sao, C., Hara, K., Murakami, K., Matsuyoshi, S.: Experience mining: building a large-scale database of personal experiences and opinions from web documents. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 314–321 (2008)
Narita, K., Mizuno, J., Inui, K.: A lexicon-based investigation of research issues in Japanese factuality analysis. In: Proceedings of the 6th International Joint Conference on Natural Language Processing (IJCNLP 2013), pp. 587–595 (2013)
Aramaki, E., Maskawa, S., Morita, M.: Twitter catches the flu: detecting influenza epidemics using twitter. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP) (2011)
Sakaki, T., Okazaki, M., Matsuo Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web (WWW2010) (2010)
Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo locating twitter users. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 759–769 (2010)
Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: A latent variable model for geographic lexical variation. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1277–1287 (2010)
Miyabe, M., Kita, Y., Kubo, K., Aramaki E.: Extracting aspect record related to a location from microblog (in Japanese). In: Proceedings of the 20th Annual Meeting of the Association for Natural Language Processing, pp. 420–423 (2014)
Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1999)
Mark, H., Holmes, E., Pfahringer, G., Reutemann, B., Witten, I.H.: The Weka data mining software: an update. SIGKDD Explor. 11 (2009)
Shimada, K., Uehara, H., Endo, T.: A comparative study of potential-of-interest days on a sightseeing spot recommender. In: International Workshop on Sustainable Tourism Innovations and Information Systems (STIIS2014) (2014)
Shimada, K., Uehara, H., Endo, T.: Sightseeing location recommendation system based on collective intelligence (in Japanese). Soc. Tour. Inform. 10(1), 113–124 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shimada, K., Onitsuka, Y., Inoue, S., Endo, T. (2015). On-Site Likelihood Identification of Tweets Using a Two-Stage Method. In: Matsuo, T., Hashimoto, K., Iwamoto, H. (eds) Tourism Informatics. Intelligent Systems Reference Library, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47227-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-47227-9_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47226-2
Online ISBN: 978-3-662-47227-9
eBook Packages: EngineeringEngineering (R0)