A PLLS-PKF Method for Target Tracking of DOA Measurement Sensor Networks | SpringerLink
Skip to main content

A PLLS-PKF Method for Target Tracking of DOA Measurement Sensor Networks

  • Conference paper
  • First Online:
Advances in Wireless Sensor Networks (CWSN 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 501))

Included in the following conference series:

  • 1285 Accesses

Abstract

In this paper, we propose a novel tracking algorithm that adopts both Pseudo-linear least square method and Pseudo-linear Kalman Filtering (PLLS-PKF) for target tracking using bearing only sensor networks. The conventional Pseudo-linear Kalman Filtering (PKF) is one of the practice tracking methods in this situation. Limited by the data accuracy, the outputs of PKF tend to be unstable by incorporating signal data with large error. Using PLLS localization to yield one step iteration updating process, the modified method can help to improve the estimation accuracy. Both numerical simulations and real experiment are conducted to illustrate that the PLLS-PKF method can provide better tracking performance compared with the conventional PKF method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Hawkes, M., Nehorai, A.: Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Sig. Process. 46(9), 2291–2304 (1998)

    Article  Google Scholar 

  3. Di, M., Joo, E.M., Beng, L.H.: A comprehensive study of Kalman filter and extended Kalman filter for target tracking in wireless sensor networks. In: IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC 2008, pp. 2792–2797. IEEE, October 2008

    Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  5. Rao, S.K.: Pseudo-linear estimator for bearings-only passive target tracking. IEE Proc.-Radar Sonar Navig. 148(1), 16–22 (2001)

    Article  Google Scholar 

  6. Rao, S.K.: Modified gain extended Kalman filter with application to bearings-only passive manoeuvring target tracking. IEE Proc.-Radar Sonar Navig. 152(4), 239–244 (2005)

    Article  Google Scholar 

  7. Rao, S.K., Babu, V.S.: Unscented Kalman filter with application to bearings-only passive manoeuvring target tracking. In: International Conference on Signal Processing, Communications and Networking, 2008, ICSCN 2008, pp. 219–224. IEEE (2008)

    Google Scholar 

  8. Arulampalam, M.S., Ristic, B., Gordon, N., et al.: Bearings-only tracking of manoeuvring targets using particle filters. EURASIP J. Adv. Sig. Process. 2004(15), 562960 (2004)

    MATH  Google Scholar 

  9. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. Part I Dyn. Models 39(4), 1333–1364 (2003)

    Article  Google Scholar 

  10. Gavish, M., Weiss, A.J.: Performance analysis of bearing-only target location algorithms. IEEE Trans. Aerosp. Electron. Syst. 28(3), 817–828 (1992)

    Article  Google Scholar 

  11. Ristic, B., Arulampalam, M.S.: Tracking a manoeuvring target using angle-only measurements: algorithms and performance. Sig. Process. 83(6), 1223–1238 (2003)

    Article  MATH  Google Scholar 

  12. Doğançay, K.: Bearings-only target localization using total least squares. Sig. Process. 85(9), 1695–1710 (2005)

    Article  MATH  Google Scholar 

  13. Li, Y., Wang, Z.: The design and implement of acoustic array sensor network platform for online multi-target tracking. In: 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 323–328 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, Y., Xie, W., Hu, X., Bao, M., Wang, Z., Guan, L. (2015). A PLLS-PKF Method for Target Tracking of DOA Measurement Sensor Networks. In: Sun, L., Ma, H., Fang, D., Niu, J., Wang, W. (eds) Advances in Wireless Sensor Networks. CWSN 2014. Communications in Computer and Information Science, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46981-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46981-1_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46980-4

  • Online ISBN: 978-3-662-46981-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics