Abstract
In this paper, we propose a novel tracking algorithm that adopts both Pseudo-linear least square method and Pseudo-linear Kalman Filtering (PLLS-PKF) for target tracking using bearing only sensor networks. The conventional Pseudo-linear Kalman Filtering (PKF) is one of the practice tracking methods in this situation. Limited by the data accuracy, the outputs of PKF tend to be unstable by incorporating signal data with large error. Using PLLS localization to yield one step iteration updating process, the modified method can help to improve the estimation accuracy. Both numerical simulations and real experiment are conducted to illustrate that the PLLS-PKF method can provide better tracking performance compared with the conventional PKF method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)
Hawkes, M., Nehorai, A.: Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Trans. Sig. Process. 46(9), 2291–2304 (1998)
Di, M., Joo, E.M., Beng, L.H.: A comprehensive study of Kalman filter and extended Kalman filter for target tracking in wireless sensor networks. In: IEEE International Conference on Systems, Man and Cybernetics, 2008, SMC 2008, pp. 2792–2797. IEEE, October 2008
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)
Rao, S.K.: Pseudo-linear estimator for bearings-only passive target tracking. IEE Proc.-Radar Sonar Navig. 148(1), 16–22 (2001)
Rao, S.K.: Modified gain extended Kalman filter with application to bearings-only passive manoeuvring target tracking. IEE Proc.-Radar Sonar Navig. 152(4), 239–244 (2005)
Rao, S.K., Babu, V.S.: Unscented Kalman filter with application to bearings-only passive manoeuvring target tracking. In: International Conference on Signal Processing, Communications and Networking, 2008, ICSCN 2008, pp. 219–224. IEEE (2008)
Arulampalam, M.S., Ristic, B., Gordon, N., et al.: Bearings-only tracking of manoeuvring targets using particle filters. EURASIP J. Adv. Sig. Process. 2004(15), 562960 (2004)
Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. Part I Dyn. Models 39(4), 1333–1364 (2003)
Gavish, M., Weiss, A.J.: Performance analysis of bearing-only target location algorithms. IEEE Trans. Aerosp. Electron. Syst. 28(3), 817–828 (1992)
Ristic, B., Arulampalam, M.S.: Tracking a manoeuvring target using angle-only measurements: algorithms and performance. Sig. Process. 83(6), 1223–1238 (2003)
Doğançay, K.: Bearings-only target localization using total least squares. Sig. Process. 85(9), 1695–1710 (2005)
Li, Y., Wang, Z.: The design and implement of acoustic array sensor network platform for online multi-target tracking. In: 2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 323–328 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, Y., Xie, W., Hu, X., Bao, M., Wang, Z., Guan, L. (2015). A PLLS-PKF Method for Target Tracking of DOA Measurement Sensor Networks. In: Sun, L., Ma, H., Fang, D., Niu, J., Wang, W. (eds) Advances in Wireless Sensor Networks. CWSN 2014. Communications in Computer and Information Science, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46981-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-662-46981-1_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46980-4
Online ISBN: 978-3-662-46981-1
eBook Packages: Computer ScienceComputer Science (R0)