Ultrafast All-Optical Reversible Peres and Feynman-Double Logic Gates with Silicon Microring Resonators | SpringerLink
Skip to main content

Ultrafast All-Optical Reversible Peres and Feynman-Double Logic Gates with Silicon Microring Resonators

  • Chapter
  • First Online:
Transactions on Computational Science XXIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8911))

Abstract

We present designs of reversible Peres logic gate and Feynman-Double logic gate based on all-optical switching by two-photon absorption induced free-carrier injection in silicon add-drop microring resonators. The logic gates have been theoretically analyzed using time-domain coupled-mode theory and all-optical switching has been optimized for low-power (25 mW) ultrafast (25 ps) operation with high modulation depth (85 %) to enable logic operations at 40 Gb/s. The advantages of high Q-factor, tunability, compactness, cascadibility, reversibility and reconfigurability make the designs favorable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T.F.: Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014)

    Article  Google Scholar 

  2. Jalali, B., Fathpour, S.: Silicon photonics. IEEE J. Lightwave Technol. 24, 4600–4615 (2006)

    Article  Google Scholar 

  3. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4, 518–526 (2010)

    Article  Google Scholar 

  4. Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013)

    Article  Google Scholar 

  5. Heck, M.J.R., Bauters, J.F., Davenport, M.L., Doylend, J.K., Jain, S., Kurczveil, G., Srinivasan, S., Tang, Y., Bowers, J.E.: Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quant. Electron. 19, 6100117–6100134 (2012)

    Article  Google Scholar 

  6. Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Exp. 19, 5244–5259 (2011)

    Article  Google Scholar 

  7. Zhang, L., Ding, J., Tian, Y., Ji, R., Yang, L., Chen, H., Zhou, P., Lu, Y., Zhu, W., Min, R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Exp. 20, 11605–11614 (2012)

    Article  Google Scholar 

  8. Tian, Y.H., Zhang, L., Ji, R.Q., Yang, L., Zhou, P., Chen, H.T., Ding, J.F., Zhu, W.W., Lu, Y.Y., Jia, L.X., Fang, Q., Yu, M.B.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36, 1650–1652 (2011)

    Article  Google Scholar 

  9. Lin, S., Ishikawa, Y., Wada, K.: Demonstration of optical computing logics based on binary decision diagram. Opt. Exp. 20, 1378–1384 (2012)

    Article  Google Scholar 

  10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  12. Maruyama, K., Nori, F., Vedral, V.: The physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1–22 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  MathSciNet  Google Scholar 

  14. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang, Y.-P., Kumar, P.: Interaction-free quantum optical Fredkin gates in χ2 microdisks. IEEE J. Quantum Electron. 18, 600–611 (2012)

    Article  Google Scholar 

  16. Fedorov, A., Steffen, L., Baur, M., Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2011)

    Article  Google Scholar 

  17. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6, 14–31 (2010)

    Google Scholar 

  18. Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular qca. IEEE Trans. Nanotechnol. 9, 62–69 (2010)

    Article  Google Scholar 

  19. Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)

    Article  Google Scholar 

  20. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)

    Article  Google Scholar 

  21. Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)

    Article  Google Scholar 

  22. Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)

    Article  Google Scholar 

  23. Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Exp. 15, 924–929 (2007)

    Article  Google Scholar 

  24. Preble, S.F., Xu, Q., Lipson, M.: Changing the color of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007)

    Article  Google Scholar 

  25. Dong, P., Preble, S.F., Lipson, M.: All-optical compact silicon comb switch. Opt. Exp. 15, 9600–9605 (2007)

    Article  Google Scholar 

  26. Caulfield, H.J., Soref, R.A.: Universal reconfigurable optical logic with silicon-on-insulator resonant structures. Photonics Nanostruct. 5, 14–20 (2007)

    Article  Google Scholar 

  27. Sethi, P., Roy, S.: All-optical ultrafast adder/subtractor and MUX/DEMUX circuits with silicon microring resonators. In: Dolev, S., Oltean, M. (eds.) OSC 2012. LNCS, vol. 7715, pp. 42–53. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Sethi, P., Roy, S.: All-optical ultrafast switching in 2 × 2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. IEEE J. Lightw. Technol. 32, 2173–2180 (2014)

    Article  Google Scholar 

  29. Sethi, P., Roy, S.: Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches. IEEE J. Sel. Top. Quantum. Electron. 20, 118–125 (2014)

    Article  Google Scholar 

  30. Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. IEEE J. Lightwave Technol. 24, 1433–1439 (2006)

    Article  Google Scholar 

  31. Waldow, M., Plötzing, T., Gottheil, M., Först, M., Bolten, J., Wahlbrink, T., Kurz, H.: 25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt. Exp. 16, 7693–7702 (2008)

    Article  Google Scholar 

  32. Chin, A., Lee, K.Y., Lin, B.C., Horng, S.: Picosecond photoresponse of carriers in Si ion-implanted Si. Appl. Phys. Lett. 69, 653–655 (1996)

    Article  Google Scholar 

  33. Guha, B., Kyotoku, B.B.C., Lipson, M.: CMOS-compatible athermal silicon microring resonators. Opt. Exp. 18, 3487–3493 (2010)

    Article  Google Scholar 

  34. Padmaraju, K., Chan, J., Chen, L., Lipson, M., Bergman, K.: Thermal stabilization of a microring modulator using feedback control. Opt. Exp. 20, 27999–28008 (2012)

    Article  Google Scholar 

  35. Turner, A.C., Foster, M.A., Gaeta, A.L., Lipson, M.: Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Exp. 16, 4881–4887 (2008)

    Article  Google Scholar 

  36. Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)

    Article  Google Scholar 

  37. Roy, S., Prasad, M.: Novel proposal for all-optical Fredkin logic gate with bacteriorhodopsin-coated microcavity and its applications. Opt. Eng. 49, 065201–065210 (2010)

    Article  Google Scholar 

  38. Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206–727212 (2012)

    Article  Google Scholar 

  39. Roy, S., Prasad, M., Topolancik, T., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys. 107, 053115–053124 (2010)

    Article  Google Scholar 

  40. Roy, S., Prasad, M.: Design of all-optical reconfigurable logic unit with bacteriorhodopsin protein coated microcavity switches. IEEE Trans. Nanobiosci. 10, 160–171 (2011)

    Article  Google Scholar 

  41. Simos, H., Mesaritakis, C., Alexandropoulos, D., Syvridis, D.: Dynamic analysis of crosstalk performance in microring-based add/drop filters. IEEE J. Lightw. Technol. 27, 2027–2034 (2009)

    Article  Google Scholar 

  42. Lee, B.G., Biberman, A., Dong, P., Lipson, M., Bergman, K.: All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20, 767–769 (2008)

    Article  Google Scholar 

  43. Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010)

    Article  Google Scholar 

  44. Sederberg, S., Driedger, D., Nielsen, M., Elezzabi, A.Y.: Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Exp. 19, 23494–23503 (2011)

    Article  Google Scholar 

  45. Midrio, M., Boscolo, S., Moresco, M., Romagnoli, M., Angelis, C.D., Locatelli, A., Capobianco, A.D.: Graphene–assisted critically–coupled optical ring modulator. Opt. Exp. 20, 23144–23155 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

P. S. is grateful to the University Grants Commission, Government of India for the award of UGC-BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhdev Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sethi, P., Roy, S. (2014). Ultrafast All-Optical Reversible Peres and Feynman-Double Logic Gates with Silicon Microring Resonators. In: Gavrilova, M., Tan, C., Thapliyal, H., Ranganathan, N. (eds) Transactions on Computational Science XXIV. Lecture Notes in Computer Science(), vol 8911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45711-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45711-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45710-8

  • Online ISBN: 978-3-662-45711-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics