Abstract
Visually impaired people often have to face difficulty when they try to identify denominations of bank notes. Currently in Bangladesh, there is no system that can easily detect the monetary value of the note. Pattern recognition systems developed over the years are now fast enough to do image matching in real time. This enables us to develop a system able to analyze an input frame and generate the value of the paper-based currency in order to aid the visually impaired in their day-to-day life. The proposed system can recognize Bangladeshi paper currency notes with 89.4% accuracy on white paper background and with 78.4% accuracy tested on a complex background.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
WHO Media Centre fact sheet no. 282 (October 2013). http://www.who.int/mediacentre/factsheets/fs282/en/
Digman, M., Elder, C.: Mobile Banknote Recognition and Conversion. https://stacks.stanford.edu/file/druid:yt916dh6570/Elder_Digman_Foreign_Bill_Recognition.pdf
Bruna, A., Farinella, G.M., Guarnera, G.C., Battiato, S.: Forgery Detection and Value Identification of Euro Banknotes. Sensor (Basel) 13(2), 2515–2529 (2013). doi:10.3390/s1302022515.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649387/ (February 18, 2013)
Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (2004). http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-Up Robust Features (SURF). ftp://vision.ee.ethz.ch/publications/articles/eth_biwi_00517.pdf
Open Source Computer Vision. http://opencv.org/
Perception, M., Group, R.: Chubu University, Japan. http://www.vision.cs.chubu.ac.jp/CVR/pdf/Rublee_iccv2011.pdf
Open CV, Feature Detection and Description. http://docs.opencv.org/modules/features2d/doc/feature_detection_and_description.html#orb-orb
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. European Conference on Computer Vision (May 2006). http://www.edwardrosten.com/work/rosten_2006_machine.pdf
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Issues with imgldx in Descriptor Matcher mexopencv, Stack Overflow. http://stackoverflow.com/questions/20717025/issues-with-imgidx-in-descriptormatcher-mexopencv
Yamaguchi, K.: GitHub.com/mexopencv. https://github.com/kyamagu/mexopencv
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rahman, M.M., Poon, B., Amin, M.A., Yan, H. (2014). Recognizing Bangladeshi Currency for Visually Impaired. In: Wang, X., Pedrycz, W., Chan, P., He, Q. (eds) Machine Learning and Cybernetics. ICMLC 2014. Communications in Computer and Information Science, vol 481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45652-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-45652-1_14
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45651-4
Online ISBN: 978-3-662-45652-1
eBook Packages: Computer ScienceComputer Science (R0)