Diagnostic Test Generation for Statistical Bug Localization Using Evolutionary Computation | SpringerLink
Skip to main content

Diagnostic Test Generation for Statistical Bug Localization Using Evolutionary Computation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Abstract

Verification is increasingly becoming a bottleneck in the process of designing electronic circuits. While there exists several verification tools that assist in detecting occurrences of design errors, or bugs, there is a lack of solutions for accurately pin-pointing the root causes of these errors. Statistical bug localization has proven to be an approach that scales up to large designs and is widely utilized both in debugging hardware and software. However, the accuracy of localization is highly dependent on the quality of the stimuli. In this paper we formulate diagnostic test set generation as a task for an evolutionary algorithm, and propose dedicated fitness functions that closely correlate with the bug localization capabilities. We perform experiments on the register-transfer level design of the Plasma microprocessor coupling an evolutionary test-pattern generator and a simulator for fitness evaluation. As a result, the diagnostic resolution of the tests is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ITRS. International Technology Roadmap for Semiconductors report. URL: http://www.itrs.net/

  2. FP6 PROSYD (2004). PROSYD (Property-Based System Design), FP6 funded STREP. http://www.prosyd.org/

  3. Peischl, B., Wotawa, F.: Automated Source-Level Error Localization in Hardware Designs. Design&Test of Computers 23(1), 8–19 (2006)

    Google Scholar 

  4. Smith, A., Veneris, A., Viglas, A.: Design Diagnosis Using Boolean Satisfiability. In: Proc. Asia and South Pacific Design Automation Conference (ASPDAC), pp. 218–223 (2004)

    Google Scholar 

  5. Chang, K.-H., Wagner, I., Bertacco, V., Markov, I.L.: Automatic Error Diagnosis and Correction for RTL Designs. In: Proceedings International Workshop on Logic and Synthesis (IWLS), pp. 106-113 (May 2007)

    Google Scholar 

  6. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation. ACM SIGPLAN Notices 40(6), 15–26 (2005)

    Article  Google Scholar 

  7. Liu, G., Fei, L., Yan, X., Han, J., Midkiff, S.P.: Statistical debugging: A hypothesis testing-based approach. IEEE Trans. on Software Engineering 32(10), 831–848 (2006)

    Article  Google Scholar 

  8. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for effective fault localization. J. of Systems and Software 83(2), 188–208 (2010)

    Article  Google Scholar 

  9. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings Int. Conf. on Software Engineering, pp. 342-351 (2005)

    Google Scholar 

  10. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization technique. In: Int. Conf. on Automated Software Engineering, pp. 273-283 (2005)

    Google Scholar 

  11. Tšepurov, A., Tihhomirov, V., Jenihhin, M., Raik, J., Bartsch, G., Meza Escobar, J.H., Wuttke, H.D.: Localization of Bugs in Processor Designs Using zamiaCAD Framework. In: 13th International Workshop on Microprocessor Test and Verification (MTV 2012) Common Challenges and Solutions (2012)

    Google Scholar 

  12. Tihhomirov, V., Tšepurov, A., Jenihhin, M., Raik, J., Ubar, R.: Assessment of diagnostic test for automated bug localization. In: 14th Latin American Test Workshop (LATW), p. 6 (2013)

    Google Scholar 

  13. Deng, S., Cheng, K.-T., Bian, J., Kong, Z.: Mutation-based diagnostic test generation for hardware design error diagnosis. In: IEEE International Test Conference (ITC) (2010)

    Google Scholar 

  14. Bernardi, P., Sánchez, E.E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective Technique for the Automatic Generation of Diagnosis-Oriented Programs for Processor Cores. IEEE Transactions on CAD of ICs and Systems 27(3), 570-574 (2008)

    Google Scholar 

  15. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the Accuracy of Spectrum-based Fault Localization. In: Testing: Academic and Industrial Conference Practice and Research Techniques – MUTATION. TAICPART-MUTATION 2007, pp. 89–98 (2007)

    Google Scholar 

  16. Raik, J., Repinski, U.: Comparison of Model-Based Error Localization Algorithms for C Designs. In: Proc. of 10th East-West Design & Test Symposium (2012)

    Google Scholar 

  17. Lisherness, P., Cheng, K.-T.: Coverage discounting: A generalized approach for testbench qualification. In: IEEE International High Level Design Validation and Test Workshop (HLDVT), pp. 49-56 (November 9-11, 2011)

    Google Scholar 

  18. zamiaCAD framework web page. http://zamiaCAD.sf.net

  19. Tšepurov, A., Bartsch, G., Dorsch, R., Jenihhin, M., Raik, J., Tihhomirov, V.: A Scalable Model Based RTL Framework zamiaCAD for Static Analysis. In: IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Santa Cruz, USA (2012)

    Google Scholar 

  20. Drechsler, R.: Evolutionary Algorithms for VLSI CAD. Springer (1998) ISBN: 978-1-4419-5040-6

    Google Scholar 

  21. Squillero, G.: Artificial evolution in computer aided design: from the optimization of parameters to the creation of assembly programs. Computing 93(2-4), 102–120 (2011)

    Article  MathSciNet  Google Scholar 

  22. Corno, F., Sonza Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first ATPG results. IEEE Design & Test of Computers 17(3), 44–53 (2000)

    Google Scholar 

  23. Corno, F., Sanchez, E., Sonza Reorda, M., Squillero, G.: Automatic test generation for verifying microprocessors. IEEE Potentials 24(1), 34–37 (2005)

    Google Scholar 

  24. Squillero, G.: MicroGP—An Evolutionary Assembly Program Generator. Genetic Programming and Evolvable Machines 6(3), 247–263 (2005)

    Article  Google Scholar 

  25. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the µGP toolkit. Springer (2011). ISBN: 978-0-387-09426-7

    Google Scholar 

  26. Plasma CPU project. http://opencores.org/project plasma

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gaudesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaudesi, M. et al. (2014). Diagnostic Test Generation for Statistical Bug Localization Using Evolutionary Computation. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics