Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games | SpringerLink
Skip to main content

Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2014)

Abstract

This work presents the results obtained from comparing different tree depths in a Genetic Programming Algorithm to create agents that play the Planet Wars game. Three different maximum levels of the tree have been used (3, 7 and Unlimited) and two bots available in the literature, based on human expertise, and optimized by a Genetic Algorithm have been used for training and comparison. Results show that in average, the bots obtained using our method equal or outperform the previous ones, being the maximum depth of the tree a relevant parameter for the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map generator with self-adaptive complexity for the real-time strategy game planet wars. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 274–283. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Mora, A.M., Fernández-Ares, A., Guervós, J.J.M., García-Sánchez, P., Fernandes, C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023 (2012)

    Article  Google Scholar 

  3. Fernández-Ares, A., García-Sánchez, P., Mora, A.M., Guervós, J.J.M.: Adaptive bots for real-time strategy games via map characterization. In: 2012 IEEE Conference on Computational Intelligence and Games, CIG 2012, Granada, Spain, September 11–14, pp. 417–721. IEEE (2012)

    Google Scholar 

  4. Koza, J.R.: Genetically breeding populations of computer programs to solve problems in artificial intelligence. In: Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, pp. 819–827 (1990)

    Google Scholar 

  5. Garcia-Sanchez, P., Merelo, J.J., Laredo, J.L.J., Mora, A.M., Castillo, P.A.: Evolving xslt stylesheets for document transformation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1021–1030. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A review of computational intelligence in rts games. In: FOCI, pp. 114–121. IEEE (2013)

    Google Scholar 

  7. Esparcia-Alcázar, A.I., García, A.I.M., García, A.M., Guervós, J.J.M., García-Sánchez, P.: Controlling bots in a first person shooter game using genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  8. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the nero video game. In: IEEE Transactions on Evolutionary Computation, pp. 653–668 (2005)

    Google Scholar 

  9. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 224–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Sipper, M., Azaria, Y., Hauptman, A., Shichel, Y.: Designing an evolutionary strategizing machine for game playing and beyond. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 37(4), 583–593 (2007)

    Article  Google Scholar 

  11. Elyasaf, A., Hauptman, A., Sipper, M.: Evolutionary design of freecell solvers. IEEE Transactions on Computational Intelligence and AI in Games 4(4), 270–281 (2012)

    Article  Google Scholar 

  12. Benbassat, A., Sipper, M.: Evolving both search and strategy for reversi players using genetic programming, 47–54 (2012)

    Google Scholar 

  13. Brandstetter, M., Ahmadi, S.: Reactive control of ms. pac man using information retrieval based on genetic programming, 250–256 (2012)

    Google Scholar 

  14. Wittkamp, M., Barone, L., While, L.: A comparison of genetic programming and look-up table learning for the game of spoof, 63–71 (2007)

    Google Scholar 

  15. Esparcia-Alcázar, A.I., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft Computing 17(8), 1479–1487 (2013)

    Article  Google Scholar 

  16. García-Sánchez, P., González, J., Castillo, P.A., Arenas, M.G., Guervós, J.J.M.: Service oriented evolutionary algorithms. Soft Comput. 17(6), 1059–1075 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo García-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Sánchez, P., Fernández-Ares, A., Mora, A.M., Castillo, P.A., González, J., Guervós, J.J.M. (2014). Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games. In: Esparcia-Alcázar, A., Mora, A. (eds) Applications of Evolutionary Computation. EvoApplications 2014. Lecture Notes in Computer Science(), vol 8602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45523-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45523-4_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45522-7

  • Online ISBN: 978-3-662-45523-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics