Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision | SpringerLink
Skip to main content

Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

  • 2194 Accesses

Abstract

We present a purely numerical (i.e., non-algebraic) subdivision algorithm for computing an isotopic approximation of a simple arrangement of curves. The arrangement is “simple” in the sense that any three curves have no common intersection, any two curves intersect transversally, and each curve is non-singular. A curve is given as the zero set of an analytic function on the plane, along with effective interval forms of the function and its partial derivatives. Our solution generalizes the isotopic curve approximation algorithms of Plantinga-Vegter (2004) and Lin-Yap (2009). We use certified numerical primitives based on interval methods. Such algorithms have many favorable properties: they are practical, easy to implement, suffer no implementation gaps, integrate topological with geometric computation, and have adaptive as well as local complexity. A preliminary implementation is available in Core Library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boissonnat, J.-D., Cohen-Steiner, D., Mourrain, B., Rote, G., Vegter, G.: Meshing of surfaces. In: Boissonnat, Teillaud (eds.) [2], ch. 5

    Google Scholar 

  2. Boissonnat, J.-D., Teillaud, M. (eds.): Effective Computational Geometry for Curves and Surfaces. Springer (2006)

    Google Scholar 

  3. Burr, M., Choi, S., Galehouse, B., Yap, C.: Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. In: 33rd Int’l Symp. Symb. and Alge. Comp., pp. 87–94 (2008); Special Issue of JSC 47(2), 131–152 (2012)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  5. Kulpa, W.: The Poincaré-Miranda theorem. The American Mathematical Monthly 104(6), 545–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete and Comp. Geom. 45(4), 760–795 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  8. Moore, R.E., Kioustelidis, J.B.: A simple test for accuracy of approx. solns. to nonlinear (or linear) systems. SIAM J. Numer. Anal. 17(4), 521–529 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Computers & Graphics 30, 854–879 (2006)

    Article  Google Scholar 

  10. Plantinga, S.: Certified Algorithms for Implicit Surfaces. Ph.D. thesis, Groningen University, Inst. for Math. and Comp. Sc., Groningen, Netherlands (December 2006)

    Google Scholar 

  11. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Proc. Eurographics SGP, pp. 245–254. ACM Press, New York (2004)

    Google Scholar 

  12. Stahl, V.: Interval Methods for Bounding the Range of Poly. and Solving Systems of Nonlin. Eqns. Ph.D. thesis, Johannes Kepler University, Linz (1995)

    Google Scholar 

  13. Yap, C.K.: Complete subdivision algorithms, I: Intersection of Bezier curves. In: 22nd ACM Symp. on Comp. Geom., pp. 217–226 (July 2006)

    Google Scholar 

  14. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The Design of Core 2: A Library for Exact Numeric Computation in Geometry and Algebra. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lien, JM., Sharma, V., Vegter, G., Yap, C. (2014). Isotopic Arrangement of Simple Curves: An Exact Numerical Approach Based on Subdivision. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics