Accelerating Artificial Intelligence-based Whole Slide Image Analysis with an Optimized Preprocessing Pipeline | SpringerLink
Skip to main content

Accelerating Artificial Intelligence-based Whole Slide Image Analysis with an Optimized Preprocessing Pipeline

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Abstract

As the field of digital pathology continues to advance, the computeraided analysis of whole slide images (WSI) has become an essential component for cancer diagnosis, staging, biomarker prediction, and therapy evaluation. However, even with the latest hardware developments, the processing of entire slides still demands significant computational resources. Therefore, many WSI analysis pipelines rely on patch-wise processing by tessellating a WSI into smaller sections and aggregating the results to retrieve slide-level outputs.One commonality among all these algorithms is the necessity for WSI preprocessing to extract patches, with each algorithm having its own requirements such as sliding window extraction or extracting patches at multiple magnification levels. In this paper, we present a novel Python-based software framework that leverages NVIDIA’s cuCIM library and parallelization to accelerate the preprocessing of WSIs, named PathoPatch. Compared to existing frameworks, we achieve a substantial reduction in processing time while maintaining or even improving the preprocessing capabilities. The code is available under https://github.com/TIO-IKIM/PathoPatcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lu MY, Williamson DF, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng.2021;5(6):555–70.

    Google Scholar 

  2. Dusenberry M, Hu F, Jindal N, Eriksson D. Deep-histopath. https : / / github . com / CODAIT/deep-histopath. 2019.

    Google Scholar 

  3. Levy JJ, Salas LA, Christensen BC, Sriharan A, Vaickus LJ. PathFlowAI: A high-throughput workflow for preprocessing, deep learning and interpretation in digital pathology. Pac Symp Biocomput. 2020;25:403–14.

    Google Scholar 

  4. Berman AG, Orchard WR, Gehrung M, Markowetz F. SliDL: a toolbox for processing whole-slide images in deep learning. PLoS One. 2023;18(8):e0289499.

    Google Scholar 

  5. Neuner C, Jabari S, Vilz S. WSI processing pipeline. https : / / github . com / FAU - DLM/wsi_processing_pipeline. 2023.

    Google Scholar 

  6. Marcolini A, Bussola N, Arbitrio E, Amgad M, Jurman G, Furlanello C. histolab: a Python library for reproducible digital pathology preprocessing with automated testing. SoftwareX. 2022;20(101237).

    Google Scholar 

  7. Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G et al. TIAToolbox as an end-to-end library for advanced tissue image analytics. Commun Med. 2022;2(1).

    Google Scholar 

  8. Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: A vendor-neutral software foundation for digital pathology. J Pathol Inform. 2013;4(1):27.

    Google Scholar 

  9. Bradski G. The opencv library. Dr. Dobb’s Journal of Software Tools. 2000.

    Google Scholar 

  10. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N et al. scikit-image: image processing in python. PeerJ. 2014;2:e453.

    Google Scholar 

  11. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

    Google Scholar 

  12. Macenko M, Niethammer M, Marron JS, Borland D,Woosley JT, Guan X et al. A method for normalizing histology slides for quantitative analysis. Proc IEEE Int Symp Biomed Imaging. 2009:1107–10.

    Google Scholar 

  13. NVIDIA. cuCIM. https://github.com/rapidsai/cucim. 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Hörst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hörst, F., Schaheer, S.H., Baldini, G., Bahnsen, F.H., Egger, J., Kleesiek, J. (2024). Accelerating Artificial Intelligence-based Whole Slide Image Analysis with an Optimized Preprocessing Pipeline. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_91

Download citation

Publish with us

Policies and ethics