Comparison of Deep Learning Image-to-image Models for Medical Image Translation | SpringerLink
Skip to main content

Comparison of Deep Learning Image-to-image Models for Medical Image Translation

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2024 (BVM 2024)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

  • 967 Accesses

Abstract

We conducted a comparative analysis of six image-to-image deep learning models for the purpose of MRI-to-CT image translation comprising resUNet, attUnet, DCGAN, pix2pixGAN with resUNet, pix2pixGAN with attUnet, and the denoising diffusion probabilistic model (DDPM). These models underwent training and assessment using the SynthRAD2023 Grand Challenge dataset. For training, 170 MRI and CT image pairs (patients) were employed, while a set of 10 patients was reserved for testing. In summary, the pix2pixGAN with resUNet achieved the hightest scores (SSIM = 0.81±0.21, MAE = 55.52±3.50, PSNR = 27.19±6.29). The DDPM displayed considerable potential in generating CT images that closely resemble real ones in terms of detail and fidelity. Nevertheless, the quality of its generated images exhibited notable fluctuations. Consequently, further refinement is necessary to stabilize its output quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10690
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13363
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lyu Q,Wang G. Conversion between CT and MRI images using diffusion and score-matching models. 2022;(arXiv:2209.12104).

  2. Kearney V, Ziemer BP, Perry A,Wang T, Chan JW, Ma L et al. Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks. Radiol Artif Intell. 2020;2(2):e190027.

    Google Scholar 

  3. Strittmatter A, Schad LR, Zöllner FG. Deep learning-based affine medical image registration for multimodal minimal-invasive image-guided interventions: a comparative study on generalizability. Z Med Phys. 2023;23.

    Google Scholar 

  4. Raj A, Tollens F, Hansen L, Golla AK, Schad LR, Nörenberg D et al. Deep learning-based total kidney volume segmentation in autosomal dominant polycystic kidney disease using attention, cosine loss, and sharpness aware minimization. Diagnostics. 2022;12(5):1159.

    Google Scholar 

  5. Bauer DF, Russ T, Waldkirch BI, Tönnes C, Segars WP, Schad LR et al. Generation of annotated multimodal ground truth datasets for abdominal medical image registration. Int J CARS. 2021;16(8):1277–85.

    Google Scholar 

  6. Thummerer A, Bijl E van der, Galapon A, Verhoeff JJC, Langendijk JA, Both S et al. SynthRAD 2023 grand challenge dataset: generating synthetic CT for radiotherapy. Med Phys. 2023;50(7):4664–74.

    Google Scholar 

  7. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015:234–41.

    Google Scholar 

  8. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K et al. Attention U-net: learning where to look for the pancreas. Medical Imaging Deep Learning. Ed. by Ginneken B van, Welling M. Vol. 1. 2018.

    Google Scholar 

  9. Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y et al. MONAI: an open-source framework for deep learning in healthcare. 2022;(arXiv:2211.02701).

  10. Radford A, Metz L, Chintala S.Unsupervised representation learning with deep convolutional generative Adversarial Networks. Proc ICLR. 2016.

    Google Scholar 

  11. Isola P, Zhu J, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. Proc IEEE CVPR. Los Alamitos, CA, USA, 2017:5967–76.

    Google Scholar 

  12. Ho J, Jain A, Abbeel P. Denoising ciffusion probabilistic models. Proc IEEE. (NIPS’20). Vancouver, BC, Canada: Curran Associates Inc., 2020.

    Google Scholar 

  13. Chen Z, Zheng K, Li C, Yiwen Z. A hybrid network with multi-scale structure extraction and preservation for MR-to-CT synthesis in SynthRAD2023. SynthRAD2023. 2023.

    Google Scholar 

  14. Alain-Beaudoin A, Savard L, Bériault S. Paired MR-to-sCT translation using conditional GANs: an application to MR-guided radiotherapy. SynthRAD2023. 2023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Zöllner, F.G. (2024). Comparison of Deep Learning Image-to-image Models for Medical Image Translation. In: Maier, A., Deserno, T.M., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2024. BVM 2024. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-44037-4_89

Download citation

Publish with us

Policies and ethics