Image Quilting for Histological Image Synthesis | SpringerLink
Skip to main content

Image Quilting for Histological Image Synthesis

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2020

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

Applications in digital histopathology often require costly expert labels to train modern machine learning algorithms. We introduce an adaptation of the Image Quilting algorithm for texture synthesis that is utilized to virtually multiply the tissues and labels. Potential applications are augmentation in neural network training and quality control in intra-rater experiments. We evaluate this method in a subjective expert trial and a quantitative augmented learning scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6948
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8686
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Apou G, Feuerhake F, Forestier G, et al. Synthesizing whole slide images. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE; 2015. p. 154–159.

    Google Scholar 

  2. Glotsos D, Kostopoulos S, Ravazoula P, et al. Image quilting and wavelet fusion for creation of synthetic microscopy nuclei images. Comput Methods Programs Biomed. 2018;162:177–186.

    Google Scholar 

  3. Hou L, Agarwal A, Samaras D, et al. Robust histopathology image analysis: to label or to synthesize? In: Proc IEEE CCVPR; 2019. p. 8533–8542.

    Google Scholar 

  4. Efros AA, Freeman WT. Image quilting for texture synthesis and transfer. In: Proc of the 28th annual conference on CGIT. ACM; 2001. p. 341–346.

    Google Scholar 

  5. Magee D, Treanor D, Crellin D, et al. Colour normalisation in digital histopathology images. In: Proc Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (MICCAI Workshop). vol. 100. Citeseer; 2009. .

    Google Scholar 

  6. Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959;1(1):269–271.

    Google Scholar 

  7. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: PROC MICCAI. Springer; 2015. p. 234–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bug, D. et al. (2020). Image Quilting for Histological Image Synthesis. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_72

Download citation

Publish with us

Policies and ethics