A Quantum Approach to Geometric Constraint Satisfaction | SpringerLink
Skip to main content

A Quantum Approach to Geometric Constraint Satisfaction

  • Chapter
Object-Oriented Programming for Graphics

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

  • 111 Accesses

Abstract

This paper presents an incremental approach to geometric constraint satisfaction that is suitable for interactive design by categorizing solutions into so called quanta. A quantum is a range of solutions with uniform geometric characteristics. In this way, the constraint management system keeps the intermediate solutions in the geometric domain, so that new geometric constraints can be interpreted on the same high level of abstraction. This approach leads to a number of advantages: the system

  • •can handle (perhaps temporarily) under-constrained specifications,

  • •represents both alternative discrete solutions and continuous ranges of solutions,

  • •performs satisfaction locally and incrementally,

  • •supports constraint inference and geometric reasoning,

  • •preserves the declarative semantics of constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arbab, F. and Wang, B. (1989). A geometric constraint management system in Oar. In ten Hagen, P. J. W. and Veerkamp, P., editors, Intelligent CAD Systems III — Practical Experience and Evaluation (Proceedings 3rd Eurographics Workshop on Intelligent CAD Systems, 1989), pages 231-252. Springer-Verlag.

    Google Scholar 

  • Arbab, F. and Wing, J. M. (1985). Geometric reasoning: A new paradigm for processing geometric information. In Yoshikawa, H. and Warman, E. A., editors, Design Theory for CAD (Proceedings of the IFIP WG. 5.2 Working Conference, 1985), pages 145-165. Elsevier Science Publishers.

    Google Scholar 

  • Badler, N. I. and Kamran, H. (1987). Articulated figure positioning by multiple constraints. IEEE Computer Graphics & Applications (special issue on articulated figure animation, 7(6):28–38.

    Article  Google Scholar 

  • Borning, A. (1981). The programming language aspects of ThingLab, a constraint-oriented simulation laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353–387.

    Article  Google Scholar 

  • Cohen, J. (1990). Constraint logic programming languages. Communications of the ACM, 33(7):52–68.

    Article  Google Scholar 

  • Cournarie, E. and Beaudouin-Lafon, M. (1992). Alien: a prototype-based constraint system. In this volume.

    Google Scholar 

  • Davenport, J. H., Siret, Y., and Tournier, E. (1988). Computer Algebra — systems and algorithms for algebraic computation. Academic Press.

    Google Scholar 

  • Davis, E. (1987). Constraint propagation with interval labels. Artificial Intelligence, 32:281–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Emmerik, M. J. G. M. v. (1990). A system for interactive graphical modeling with 3D constraints. In Proceedings Computer Graphics International’ 90, pages 361-376. Sringer-Verlag.

    Google Scholar 

  • Freeman-Benson, B. N. (1990). Kaleidoscope: Mixing objects, constraints, and imperative programming. (ECOOP/OOPSLA’ 90 Proceedings) SIGPLAN Notices, 25(10):77–88.

    Article  Google Scholar 

  • Heintze, N. C, Michaylov, S., and Stuckey, P. J. (1987). CLP(K) and some problems in electrical engineering. In Lassez, J.-L., editor, Proceedings of the 4th International Conference on Logic Programming. MIT Press.

    Google Scholar 

  • Helander, M., editor (1988). Handbook of Human-Computer Interaction. North-Holland.

    Google Scholar 

  • Laffra, C. and van den Bos, J. (1991). Propagators and concurrent constraints. OOPS Messenger 2(2):68–72.

    Article  Google Scholar 

  • Leier, W. (1988). Constraint Programming Languages, Their Specification and Generation. Addison-Wesley.

    Google Scholar 

  • Lin, V. C., Gossard, D. C, and Light, R. A. (1981). Variational geometry in computer-aided design. (Proceedings SIGGRAPH’ 81) Computer Graphics, 15(3):171–177.

    Article  Google Scholar 

  • Mäntylä, M. (1988). An Introduction to Solid Modeling. Computer Science Press.

    Google Scholar 

  • Moon, D. A. (1989). The common lisp object-oriented programming language. In Kim, W. and Lochovsky, F., editors, Object-Oriented Concepts, Databases, and Applications. ACM Press/Addison Wesley.

    Google Scholar 

  • Nelson, G. (1985). Juno, a constraint-based graphics system. Proceedings SIGGRAPH’ 85, Computer Graphics, 19(3):235–243.

    Article  Google Scholar 

  • Pratt, M. J. (1987). Form Features and their Applications in Solid Modeling, Tutorial SIGGRAPH—87.

    Google Scholar 

  • Quintus (1990). Quintus Prolog User Manual. Quintus Computer Systems, Inc.

    Google Scholar 

  • Rankin, J. R. (1992). A graphical object oriented constraint solver. In this volume.

    Google Scholar 

  • Rankin, J. R. and Burns, J. (1991). Coordinate frames and geometric approximation in graphics object oriented programming. In E. Blake, and P. Wißkirchen, editors, Advances in Object-Oriented Graphics I, pages 131-148. Springer-Verlag.

    Google Scholar 

  • Rossignac, J. R. (1986). Constraints in constructive solid geometry. In Crow, F. and Pizer, S. M., editors, Proceedings of the 1986 ACM Workshop on Interactive 3D Graphics, pages 93-110. ACM Press.

    Google Scholar 

  • Shapiro, E. and A. Takeuchi (1983). Object-oriented programming in concurrent Prolog. New Generation Computing, 1(1):25–48.

    Article  Google Scholar 

  • Steele Jr., G. L. and Sussman, G. J. (1979). CONSTRAINTS. APL Quote Quad, 9(4-Part 1):208–225.

    Article  Google Scholar 

  • Stroustrup, B. (1986). The C++ Programming Language. Addison Wesley.

    Google Scholar 

  • Sutherland, I. (1963). Sketchpad: A man-machine graphical communication system. In Proceedings of the Spring Joint Computer Conference (IFIPS), pages 329-345.

    Google Scholar 

  • Szekely, P. and Myers, B. (1988). A user-interface toolkit based on graphical objects and constraints. In Proceedings of the 1988 ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages 36-45. ACM.

    Google Scholar 

  • Veltkamp, R. C. (1991). Geometric constraint management with quanta. In Brown, D. C., Waldron, M., and Yoshikawa, H., editors, Proceedings of the IFIP TC5/WG5.2 Working Conference on Intelligent Computer Aided Design, Columbus, Ohio, September 1991). To be published by North-Holland.

    Google Scholar 

  • Veltkamp, R. C. and Arbab, F. (1992). Geometric constraint propagation with quantum labels. In B. Falcidieno, I. Herman, and C. Pienovi, editors, Computer Graphics and Mathematics, pages 211-228. Springer-Verlag.

    Google Scholar 

  • Zaniolo, C. (1984). Object-oriented programming in Prolog. In Proceedings of the IEEE International Symposium on Logic Programming, pages 265-270. IEEE.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 EUROGRAPHICS The European Association for Computer Graphics

About this chapter

Cite this chapter

Veltkamp, R.C. (1995). A Quantum Approach to Geometric Constraint Satisfaction. In: Laffra, C., Blake, E.H., de Mey, V., Pintado, X. (eds) Object-Oriented Programming for Graphics. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79192-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79192-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79194-9

  • Online ISBN: 978-3-642-79192-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics