Classification-Based Referring Expression Generation | SpringerLink
Skip to main content

Classification-Based Referring Expression Generation

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8403))

Abstract

This paper presents a study in the field of Natural Language Generation (NLG), focusing on the computational task of referring expression generation (REG). We describe a standard REG implementation based on the well-known Dale & Reiter Incremental algorithm, and a classification-based approach that combines the output of several support vector machines (SVMs) to generate definite descriptions from two publicly available corpora. Preliminary results suggest that the SVM approach generally outperforms incremental generation, which paves the way to further research on machine learning methods applied to the task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the generation of referring expressions. Cognitive Science 19(2), 233–263 (1995)

    Article  Google Scholar 

  2. Krahmer, E., van Deemter, K.: Computational generation of referring expressions: A survey. Computational Linguistics 38(1), 173–218 (2012)

    Article  Google Scholar 

  3. Pereira, D.B., Paraboni, I.: A language modelling tool for statistical NLP. In: 5th Workshop on Information and Human Language Technology (TIL 2007), pp. 1679–1688. Anais do XXVII Congresso da SBC. Rio de Janeiro (2007)

    Google Scholar 

  4. Pereira, D.B., Paraboni, I.: Statistical surface realisation of portuguese referring expressions. In: Ranta, A., Nordström, B. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp. 383–392. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. de Novais, E.M., Paraboni, I.: Portuguese text generation using factored language models. Journal of the Brazilian Computer Society 19(2), 135–146 (2013)

    Article  Google Scholar 

  6. Cuevas, R.R.M., Paraboni, I.: A machine learning approach to portuguese pronoun resolution. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 262–271. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Belz, A., Gatt, A.: The attribute selection for GRE challenge: Overview and evaluation results. In: Proceedings of UCNLG+ MT: Language Generation and Machine Translation, Copenhagen, MT Summit XI, pp. 75–83 (2007)

    Google Scholar 

  8. Krahmer, E., van Erk, S., Verleg, A.: Graph-based generation of referring expressions. Computational Linguistics 29(1), 53–72 (2003)

    Article  MATH  Google Scholar 

  9. de Lucena, D.J., Pereira, D.B., Paraboni, I.: From semantic properties to surface text: The generation of domain object descriptions. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial 14(45), 48–58 (2010)

    Google Scholar 

  10. van Deemter, K., van der Sluis, I., Gatt, A.: Building a semantically transparent corpus for the generation of referring expressions. In: Proceedings of the Fourth International Natural Language Generation Conference, INLG 2006, pp. 130–132. Association for Computational Linguistics, Stroudsburg (2006)

    Chapter  Google Scholar 

  11. Viethen, J., Dale, R.: The use of spatial relations in referring expression generation. In: Proceedings of the Fifth International Natural Language Generation Conference, INLG 2008, pp. 59–67. Association for Computational Linguistics, Stroudsburg (2008)

    Chapter  Google Scholar 

  12. Viethen, J., Dale, R.: GRE3D7: A corpus of distinguishing descriptions for objects in visual scenes. In: Proceedings of the UCNLG+Eval: Language Generation and Evaluation Workshop, pp. 12–22. Association for Computational Linguistics, Edinburgh (2011)

    Google Scholar 

  13. Gatt, A., Belz, A., Kow, E.: The TUNA challenge 2008: overview and evaluation results. In: Proceedings of the Fifth International Natural Language Generation Conference, INLG 2008, pp. 198–206. Association for Computational Linguistics, Stroudsburg (2008)

    Chapter  Google Scholar 

  14. Gatt, A., Belz, A., Kow, E.: The TUNA-REG challenge 2009: Overview and evaluation results. In: Proceedings of the 12th European Workshop on Natural Language Generation, ENLG 2009, pp. 174–182. Association for Computational Linguistics, Stroudsburg (2009)

    Chapter  Google Scholar 

  15. Jordan, P.W., Walker, M.A.: Learning content selection rules for generating object descriptions in dialogue. J. Artif. Int. Res. 24(1), 157–194 (2005)

    MATH  Google Scholar 

  16. Viethen, J., Dale, R.: Speaker-dependent variation in content selection for referring expression generation. In: Proceedings of the Australasian Language Technology Association Workshop 2010, Melbourne, Australia, pp. 81–89 (December 2010)

    Google Scholar 

  17. Viethen, J.: The Generation of Natural Descriptions: Corpus-Based Investigations of Referring Expressions in Visual Domains. PhD thesis, Macquarie University, Sydney, Australia (2011)

    Google Scholar 

  18. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics, vol. 3, Academic Press, New York (1975)

    Google Scholar 

  19. Dale, R., Haddock, N.: Generating referring expressions involving relations. In: Proceedings of the Fifth Conference on European Chapter of the Association for Computational Linguistics, EACL 1991, pp. 161–166. Association for Computational Linguistics, Stroudsburg (1991)

    Google Scholar 

  20. Paraboni, I.: An algorithm for generating document-deictic references. In: Procs. of Workshop Coherence in Generated Multimedia, Associated with First Int. Conf. on Natural Language Generation (INLG 2000), Mitzpe Ramon, pp. 27–31 (2000)

    Google Scholar 

  21. Krahmer, E., Theune, M.: Efficient context-sensitive generation of referring expressions. In: Information Sharing: Reference and Presupposition in Language Generation and Interpretation, vol. 143, pp. 223–263. CSLI Publications, California (2002)

    Google Scholar 

  22. Kelleher, J.D., Kruijff, G.J.M.: Incremental generation of spatial referring expressions in situated dialog. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, ACL-44, pp. 1041–1048. Association for Computational Linguistics, Stroudsburg (2006)

    Google Scholar 

  23. Eugenio, B.D., Jordan, P.W., Thomason, R.H., Moore, J.D.: The agreement process: An empirical investigation of human–human computer-mediated collaborative dialogs. International Journal of Human-Computer Studies 53(6), 1017–1076 (2000)

    Article  MATH  Google Scholar 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MATH  Google Scholar 

  25. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 41–50. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  26. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  27. Passonneau, R.: Measuring agreement on set-valued items (MASI) for semantic and pragmatic annotation. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC), Valletta, Malta, pp. 831–836 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferreira, T.C., Paraboni, I. (2014). Classification-Based Referring Expression Generation. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54906-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54906-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54905-2

  • Online ISBN: 978-3-642-54906-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics