Multi-query Quantum Sums | SpringerLink
Skip to main content

Multi-query Quantum Sums

  • Conference paper
  • First Online:
Theory of Quantum Computation, Communication, and Cryptography (TQC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6745))

Included in the following conference series:

Abstract

Parity is the problem of determining the parity of a string \(f\) of \(n\) bits given access to an oracle that responds to a query \(x\in \{0,1,\ldots ,n-1\}\) with the \(x^\mathrm{th}\) bit of the string, \(f(x)\). Classically, \(n\) queries are required to succeed with probability greater than \(1/2\) (assuming equal prior probabilities for all length \(n\) bitstrings), but only \(\lceil n/2\rceil \) quantum queries suffice to determine the parity with probability \(1\). We consider a generalization to strings \(f\) of \(n\) elements of \({{\mathbb {Z}}}_k\) and the problem of determining \(\sum f(x)\). By constructing an explicit algorithm, we show that \(n-r\) (\(n\ge r\in {\mathbb {N}}\)) entangled quantum queries suffice to compute the sum correctly with worst case probability \(\min \{\lfloor n/r\rfloor /k,1\}\). This quantum algorithm utilizes the \(n-r\) queries sequentially and adaptively, like Grover’s algorithm, but in a different way that is not amplitude amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London A 400, 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Roy. Soc. London A 454, 339–354 (1998)

    Google Scholar 

  3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)

    Google Scholar 

  4. Simon, D.R.: On the power of quantum computation. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, 20–22 November 1994, pp. 116–123. IEEE, Los Alamitos, CA (1994)

    Google Scholar 

  5. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)

    Google Scholar 

  6. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005). quant-ph/0302112

    Article  MATH  MathSciNet  Google Scholar 

  7. Alagic, G., Moore, C., Russell, A.: Quantum algorithms for Simon’s problem over general groups. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 7–9 January 2007, pp. 1217–1224. ACM & SIAM, New York & Philadelphia (2007) (quant-ph/0603251)

    Google Scholar 

  8. Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proceedings of the 46th Annual Symposium on Foundations of Computer Science, Pittsburgh, PA, 22–25 October 2005, pp. 469–478. IEEE, Los Alamitos, CA (2005) (quant-ph/0504083)

    Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, Philadelphia, PA, 22–24 May 1996, pp. 212–219. ACM, New York (1996)

    Google Scholar 

  10. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997) (quant-ph/9706033)

    Google Scholar 

  11. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random walk search algorithm. Phys. Rev. A 67 (2003) 052307/1-11 (quant-ph/0210064)

    Google Scholar 

  12. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science, Cambridge, MA, 11–14 October 2003, pp. 200–209. IEEE, Los Alamitos, CA (2003) (quant-ph/ 0303041)

    Google Scholar 

  13. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theor. Comput. 1, 47–79 (2005)

    Google Scholar 

  14. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Lomonaco Jr, S.J., Brandt, H.E. (eds.) Quantum Computation and Information, Contemporary Mathematics, vol. 305, pp. 53–74. AMS, Providence, RI (2002) (quant-ph/0005055)

    Google Scholar 

  15. Meyer, D.A., Pommersheim, J.: On the uselessness of quantum queries. Theor. Comput. Sci. 412, 7068–7074 (2011) (arXiv:1004.1434, [quant-ph])

    Google Scholar 

  16. van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 8–11 November 1998, pp. 362–367. IEEE, Los Alamitos, CA (1998) (quant-ph/9805006)

    Google Scholar 

  17. Hunziker, M., Meyer, D.A.: Quantum algorithms for highly structured search problems. Quantum Inf. Process. 1, 145–154 (2002)

    Article  MathSciNet  Google Scholar 

  18. van Dam, W., Seroussi, G., Efficient quantum algorithms for estimating Gauss sums. Quantum Inf. Comput. 14 (2014) 467–492 (quant-ph/0207131)

    Google Scholar 

  19. Shakeel, A.: An improved query for the hidden subgroup problem. (arXiv:1101.1053 [quant-ph])

  20. Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theor. IT-21, 125–134 (1975)

    Google Scholar 

  21. Meyer, D.A., Pommersheim, J.: In preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, D.A., Pommersheim, J. (2014). Multi-query Quantum Sums. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54429-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54428-6

  • Online ISBN: 978-3-642-54429-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics