Abstract
Parity is the problem of determining the parity of a string \(f\) of \(n\) bits given access to an oracle that responds to a query \(x\in \{0,1,\ldots ,n-1\}\) with the \(x^\mathrm{th}\) bit of the string, \(f(x)\). Classically, \(n\) queries are required to succeed with probability greater than \(1/2\) (assuming equal prior probabilities for all length \(n\) bitstrings), but only \(\lceil n/2\rceil \) quantum queries suffice to determine the parity with probability \(1\). We consider a generalization to strings \(f\) of \(n\) elements of \({{\mathbb {Z}}}_k\) and the problem of determining \(\sum f(x)\). By constructing an explicit algorithm, we show that \(n-r\) (\(n\ge r\in {\mathbb {N}}\)) entangled quantum queries suffice to compute the sum correctly with worst case probability \(\min \{\lfloor n/r\rfloor /k,1\}\). This quantum algorithm utilizes the \(n-r\) queries sequentially and adaptively, like Grover’s algorithm, but in a different way that is not amplitude amplification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London A 400, 97–117 (1985)
Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. Roy. Soc. London A 454, 339–354 (1998)
Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)
Simon, D.R.: On the power of quantum computation. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, 20–22 November 1994, pp. 116–123. IEEE, Los Alamitos, CA (1994)
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997)
Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005). quant-ph/0302112
Alagic, G., Moore, C., Russell, A.: Quantum algorithms for Simon’s problem over general groups. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 7–9 January 2007, pp. 1217–1224. ACM & SIAM, New York & Philadelphia (2007) (quant-ph/0603251)
Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proceedings of the 46th Annual Symposium on Foundations of Computer Science, Pittsburgh, PA, 22–25 October 2005, pp. 469–478. IEEE, Los Alamitos, CA (2005) (quant-ph/0504083)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, Philadelphia, PA, 22–24 May 1996, pp. 212–219. ACM, New York (1996)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997) (quant-ph/9706033)
Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random walk search algorithm. Phys. Rev. A 67 (2003) 052307/1-11 (quant-ph/0210064)
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science, Cambridge, MA, 11–14 October 2003, pp. 200–209. IEEE, Los Alamitos, CA (2003) (quant-ph/ 0303041)
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theor. Comput. 1, 47–79 (2005)
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Lomonaco Jr, S.J., Brandt, H.E. (eds.) Quantum Computation and Information, Contemporary Mathematics, vol. 305, pp. 53–74. AMS, Providence, RI (2002) (quant-ph/0005055)
Meyer, D.A., Pommersheim, J.: On the uselessness of quantum queries. Theor. Comput. Sci. 412, 7068–7074 (2011) (arXiv:1004.1434, [quant-ph])
van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 8–11 November 1998, pp. 362–367. IEEE, Los Alamitos, CA (1998) (quant-ph/9805006)
Hunziker, M., Meyer, D.A.: Quantum algorithms for highly structured search problems. Quantum Inf. Process. 1, 145–154 (2002)
van Dam, W., Seroussi, G., Efficient quantum algorithms for estimating Gauss sums. Quantum Inf. Comput. 14 (2014) 467–492 (quant-ph/0207131)
Shakeel, A.: An improved query for the hidden subgroup problem. (arXiv:1101.1053 [quant-ph])
Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theor. IT-21, 125–134 (1975)
Meyer, D.A., Pommersheim, J.: In preparation
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meyer, D.A., Pommersheim, J. (2014). Multi-query Quantum Sums. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2011. Lecture Notes in Computer Science(), vol 6745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54429-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-54429-3_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54428-6
Online ISBN: 978-3-642-54429-3
eBook Packages: Computer ScienceComputer Science (R0)