A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters | SpringerLink
Skip to main content

A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

In the Hausdorff Voronoi diagram of a set of point-clusters in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P, and the diagram reveals the nearest cluster to t. This diagram finds direct applications in VLSI computer-aided design. In this paper, we consider “non-crossing” clusters, for which the combinatorial complexity of the diagram is linear in the total number n of points on the convex hulls of all clusters. We present a randomized incremental construction, based on point-location, to compute the diagram in expected O(nlog2 n) time and expected O(n) space, which considerably improves previous results. Our technique efficiently handles non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions.

Supported in part by the Swiss National Science Foundation project 20GG21-134355, under the auspices of the ESF EUROCORES program EuroGIGA/VORONOI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A combinatorial property of convex sets. Discrete Comput. Geom. 17(3), 307–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th Eur. Workshop on Comput. Geom. (EWCG), pp. 113–116 (2001)

    Google Scholar 

  3. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location. In: 47th Ann. IEEE Symp. Found. Comput. Sci. (FOCS), pp. 305–314 (2006)

    Google Scholar 

  4. Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data structures for halfplane proximity queries and incremental Voronoi diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 80–92. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Baumgarten, H., Jung, H., Mehlhorn, K.: Dynamic point location in general subdivisions. J. Algorithm 17(3), 342–380 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 67–116. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental approach for the Hausdorff Voronoi diagram of non-crossing clusters. CoRR abs/1312.3904 (2013)

    Google Scholar 

  8. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.S.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for Hausdorff Voronoi diagrams. In: 35th Int. Conf. on Parallel Processing (ICPP), pp. 497–504 (2006)

    Google Scholar 

  11. Devillers, O.: The Delaunay Hierarchy. Int. J. Found. Comput. S. 13, 163–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Edelsbrunner, H.: Computing the extreme distances between two convex polygons. J. Algorithm 6(2), 213–224 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karavelas, M., Yvinec, M.: The Voronoi diagram of convex objects in the plane. Technical report RR-5023, INRIA (2003)

    Google Scholar 

  16. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  17. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3(3), 157–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. McAllister, M., Kirkpatrick, D., Snoeyink, J.: A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discrete Comput. Geom. 15(1), 73–105 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Megiddo, N., Tamir, A., Zemel, E., Chandrasekaran, R.: An O(nlog2 n) algorithm for the kth longest path in a tree with applications to location problems. SIAM J. Comput. 10(2), 328–337 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE T. Comput. Aid D. 30(5), 704–716 (2011)

    Article  Google Scholar 

  22. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Ap. 14(6), 421–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Papadopoulou, E., Xu, J.: The L  ∞  Hausdorff Voronoi diagram revisited. In: 8th Int. Symp. on Voronoi Diagr. in Sci. and Eng. (ISVD), pp. 67–74 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E. (2014). A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics