Abstract
In the Hausdorff Voronoi diagram of a set of point-clusters in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P, and the diagram reveals the nearest cluster to t. This diagram finds direct applications in VLSI computer-aided design. In this paper, we consider “non-crossing” clusters, for which the combinatorial complexity of the diagram is linear in the total number n of points on the convex hulls of all clusters. We present a randomized incremental construction, based on point-location, to compute the diagram in expected O(nlog2 n) time and expected O(n) space, which considerably improves previous results. Our technique efficiently handles non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions.
Supported in part by the Swiss National Science Foundation project 20GG21-134355, under the auspices of the ESF EUROCORES program EuroGIGA/VORONOI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A combinatorial property of convex sets. Discrete Comput. Geom. 17(3), 307–318 (1997)
Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th Eur. Workshop on Comput. Geom. (EWCG), pp. 113–116 (2001)
Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location. In: 47th Ann. IEEE Symp. Found. Comput. Sci. (FOCS), pp. 305–314 (2006)
Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data structures for halfplane proximity queries and incremental Voronoi diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 80–92. Springer, Heidelberg (2006)
Baumgarten, H., Jung, H., Mehlhorn, K.: Dynamic point location in general subdivisions. J. Algorithm 17(3), 342–380 (1994)
Boissonnat, J.-D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 67–116. Springer, Heidelberg (2006)
Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental approach for the Hausdorff Voronoi diagram of non-crossing clusters. CoRR abs/1312.3904 (2013)
Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.S.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)
Clarkson, K., Shor, P.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)
Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for Hausdorff Voronoi diagrams. In: 35th Int. Conf. on Parallel Processing (ICPP), pp. 497–504 (2006)
Devillers, O.: The Delaunay Hierarchy. Int. J. Found. Comput. S. 13, 163–180 (2002)
Edelsbrunner, H.: Computing the extreme distances between two convex polygons. J. Algorithm 6(2), 213–224 (1985)
Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)
Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)
Karavelas, M., Yvinec, M.: The Voronoi diagram of convex objects in the plane. Technical report RR-5023, INRIA (2003)
Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)
Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3(3), 157–184 (1993)
McAllister, M., Kirkpatrick, D., Snoeyink, J.: A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discrete Comput. Geom. 15(1), 73–105 (1996)
Megiddo, N., Tamir, A., Zemel, E., Chandrasekaran, R.: An O(nlog2 n) algorithm for the kth longest path in a tree with applications to location problems. SIAM J. Comput. 10(2), 328–337 (1981)
Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004)
Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE T. Comput. Aid D. 30(5), 704–716 (2011)
Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Ap. 14(6), 421–452 (2004)
Papadopoulou, E., Xu, J.: The L ∞ Hausdorff Voronoi diagram revisited. In: 8th Int. Symp. on Voronoi Diagr. in Sci. and Eng. (ISVD), pp. 67–74 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E. (2014). A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-54423-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54422-4
Online ISBN: 978-3-642-54423-1
eBook Packages: Computer ScienceComputer Science (R0)