Kernel-Based Morphometry of Diffusion Tensor Images | SpringerLink
Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1512 Accesses

Abstract

Voxel-based group-wise statistical analysis of diffusion tensor imaging (DTI) is an integral component in most population-based neuroimaging studies such as those studying brain development during infancy or aging, or those investigating structural differences between healthy and diseased populations. The majority of studies using DTI limit themselves by testing only certain properties of the tensor that mainly include anisotropy and diffusivity. However, the pathology under study may affect other aspects like the orientation information provided by the tensors. Therefore, for detecting subtle pathological changes it is important to perform group-wise testing on the whole tensor, which encompasses the changes in anisotropy, diffusivity and orientation. This is rendered challenging by the fact that conventional linear statistics cannot be applied to tensors. Moreover, the pathology over the population is unknown and could be non-linear, further complicating the group-based statistical analysis. This chapter gives a perspective on performing voxel-wise morphometry of tensor data using kernel-based approach. The method is referred as Kernel-based morphometry (KBM) as it models the tensor distribution using kernel principal component analysis (kPCA), which linearizes the data in high dimensional space. Subsequently a Hotelling T 2 test is performed on the high dimensional kernelized data to determine statistical group differences. We apply this method on simulated and real datasets and show that KBM can effectively identify the underlying tensorial distribution. Thus it can potentially elucidate pathology-induced population differences, thereby establishing a kernelized full tensor framework for population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, A.L., Lee, J.E., Lazar, M., Boudos, R., DuBray, M.B., Oakes, T.R., Miller, J.N., Lu, J., Jeong, E.K., McMahon, W.M., Bigler, E.D., Lainhart, J.E.: Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34, 61–73 (2007)

    Article  Google Scholar 

  2. Ardekani, B.A., Tabesh, A., Sevy, S., Robinson, D.G., Bilder, R.M., Szeszko, P.R.: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum. Brain. Mapp. 32, 1–9 (2011)

    Article  Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006)

    Article  Google Scholar 

  4. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11, 805–821 (2000)

    Article  Google Scholar 

  5. Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., Reiss, A.L.: White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55, 323–326 (2004)

    Article  Google Scholar 

  6. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor mri. J. Magn. Reson. B 111, 209–219 (1996)

    Article  Google Scholar 

  7. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)

    Article  Google Scholar 

  8. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007)

    Article  Google Scholar 

  9. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., Golani, I.: Controlling the false discovery rate in behavior genetics research. Behav. Brain. Res. 125, 279–284 (2001)

    Article  Google Scholar 

  10. Burges, C.: Data mining and knowledge discovery handbook. Kluwer, New York (2005)

    Google Scholar 

  11. Calamante, F., Masterton, R.A.J., Tournier, J.D., Smith, R.E., Willats, L., Raffelt, D., Connelly, A.: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain. Neuroimage 70, 199–210 (2013)

    Article  Google Scholar 

  12. Cao, Y., Miller, M., Mori, S., Winslow, R.: Diffeomorphic matching of diffusion tensor images. In: Proceedings of CVPR-MMBIA, New York (2006)

    Google Scholar 

  13. Field, A.S., Alexander, A.L.: Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top. Magn. Reson. Imaging 15, 315–324 (2004)

    Article  Google Scholar 

  14. Fletcher, T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  15. Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23, 995–1005 (2004)

    Article  Google Scholar 

  16. Fletcher, P.T., Whitaker, R.T., Tao, R., DuBray, M.B., Froehlich, A., Ravichandran, C., Alexander, A.L., Bigler, E.D., Lange, N., Lainhart, J.E.: Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. Neuroimage 51, 1117–1125 (2010)

    Article  Google Scholar 

  17. Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002)

    Article  Google Scholar 

  18. Girolami, M.: Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput. 14, 669–688 (2002)

    Article  MATH  Google Scholar 

  19. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol 6, e159 (2008)

    Article  Google Scholar 

  20. Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V.J., Meuli, R., Thiran, J.P., Grant, P.E.: White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl. Acad. Sci. U S A 107, 19067–19072 (2010)

    Article  Google Scholar 

  21. Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T.P.L., Verma, R.: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage 57, 918–927 (2011)

    Article  Google Scholar 

  22. Ingalhalikar, M., Yang, J., Davatzikos, C., Verma, R.: DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors. Int. J. Imaging Syst. Technol. 20(2), 99–107 (2010)

    Article  Google Scholar 

  23. Keller, T.A., Kana, R.K., Just, M.A.: A developmental study of the structural integrity of white matter in autism. Neuroreport 18, 23–27 (2007)

    Article  Google Scholar 

  24. Khurd, P., Verma, R., Davatzikos, C.: Kernel-based manifold learning for statistical analysis of diffusion tensor images. Inf. Process. Med. Imaging 20, 581–593 (2007)

    Article  Google Scholar 

  25. Kubicki, M., Westin, C.F., McCarley, R.W., Shenton, M.E.: The application of DTI to investigate white matter abnormalities in schizophrenia. Ann. N Y Acad. Sci. 1064, 134–148 (2005)

    Article  Google Scholar 

  26. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25(3), 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  27. Li, Y., Zhu, H., Y, C., Ibrahim, J., An, H., Lin, W., Hall, C., Shen, D.: Radti: regression analyses of diffusion tensor images. In: SPIE Conference Proceedings, Dresden (2009)

    Google Scholar 

  28. Lim, K.O., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E.V., Pfefferbaum, A.: Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry 56, 367–374 (1999)

    Article  Google Scholar 

  29. Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R., Benner, T., Sorensen, A.G., Fahlbusch, R.: Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56, 130–7 (2005). Discussion 138

    Google Scholar 

  30. Park, H.J., Westin, C.F., Kubicki, M., Maier, S.E., Niznikiewicz, M., Baer, A., Frumin, M., Kikinis, R., Jolesz, F.A., McCarley, R.W., Shenton, M.E.: White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage 23, 213–223 (2004)

    Article  Google Scholar 

  31. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pierpaoli, C., Jezzard, P., Basser, P., Barnett, A.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637 (1996)

    Article  Google Scholar 

  33. Scholkopf, B., Smola, A.: Learning with Kernels. MIT, Cambridge (2002)

    Google Scholar 

  34. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Cross-subject comparison of principal diffusion direction maps. Magn. Reson. Med. 53, 1423–1431 (2005)

    Article  Google Scholar 

  35. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Group comparison of eigenvalues and eigenvectors of diffusion tensors. J. Am. Stat. Assoc. 105(490), 588–599 (2010)

    Article  MathSciNet  Google Scholar 

  36. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21, 1421–1439 (2002)

    Article  Google Scholar 

  37. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006)

    Article  Google Scholar 

  38. van den Heuvel, M.P., Mandl, R.C.W., Kahn, R.S., Hulshoff Pol, H.E.: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141 (2009)

    Article  Google Scholar 

  39. Verhoeven, J.S., Cock, P.D., Lagae, L., Sunaert, S.: Neuroimaging autism. Neuroradiology 52, 3–14 (2010)

    Article  Google Scholar 

  40. Verma, R., Khurd, P., Davatzikos, C.: On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans. Med. Imaging 26, 772–778 (2007)

    Article  Google Scholar 

  41. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004). http://radiology.rsnajnls.org/cgi/reprint/230/1/77.pdf.

  42. Wu, Y.C., Field, A.S., Chung, M.K., Badie, B., Alexander, A.L.: Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn. Reson. Med. 52, 1146–1155 (2004)

    Article  Google Scholar 

  43. Xu, D., Hao, X., Bansal, R., Plessen, K.J., Peterson, B.S.: Seamless warping of diffusion tensor fields. IEEE Trans. Med. Imaging 27, 285–299 (2008)

    Article  Google Scholar 

  44. Xu, D., Mori, S., Shen, D., van Zijl, P.C.M., Davatzikos, C.: Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50, 175–182 (2003)

    Article  Google Scholar 

  45. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27, 230–244 (2005)

    Article  Google Scholar 

  46. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10, 764–785 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants RO1-MH079938 and R01-MH092862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhura Ingalhalikar .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of the equivalence between Hotelling’s T 2 test and FDA [24].

Let x 1i , i = 1, ⋯ , N 1 be the p-dimensional data vectors belonging to class 1 and let x 2i , i = 1, ⋯ , N 2 be the p-dimensional data vectors belonging to class 2. Let \(\bar{\mathbf{x}}_{1},\bar{\mathbf{x}}_{2}\) denote the means for classes 1 and 2. Let \(S_{x} = ( \frac{1} {N_{1}+N_{2}-2})\Big(\sum _{i=1}^{N_{1}}(\mathbf{x}_{ 1i} -\bar{\mathbf{x}}_{1})(\mathbf{x}_{1i} -\bar{\mathbf{x}}_{1})^{T} +\sum _{ i=1}^{N_{2}}(\mathbf{x}_{ 2i} -\bar{\mathbf{x}}_{2})(\mathbf{x}_{2i} -\bar{\mathbf{x}}_{2})^{T}\Big)\).

Hotelling’s T 2 test: Then the T 2 test statistic is:

$$\displaystyle{ T_{x}^{2} = \frac{N_{1}N_{2}} {N_{1} + N_{2}}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{ x}^{-1}(\bar{\mathbf{x}}_{ 1} -\bar{\mathbf{x}}_{2}) }$$
(3)

Assuming normal distributions for x 1i , i = 1, ⋯ , N 1 and x 2i , i = 1, ⋯ , N 2 implies that \(F_{x} = \frac{N_{1}+N_{2}-p-1} {(N_{1}+N_{2}-2)p}T_{x}^{2}\) has the cdf \(F(p,N_{1} + N_{2} - p - 1)\). Therefore, the parametric form of Hotelling’s T 2 test is sometimes refered to as the F-test.

FDA: The FDA optimal linear discriminant direction is \(w = S_{x}^{-1}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})\) and the corresponding scalar mapping is \(y = (\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{x}^{-1}x\).

Therefore, \(\bar{y}_{1} -\bar{ y}_{2} = (\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{x}^{-1}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})\),

$$\displaystyle\begin{array}{rcl} S_{y}& =& ( \frac{1} {N_{1} + N_{2} - 2})\Big(\sum _{i=1}^{N_{1} }(y_{1i} -\bar{ y}_{1})(y_{1i} -\bar{ y}_{1})^{T} +\sum _{ i=1}^{N_{2} }(y_{2i} -\bar{ y}_{2})(y_{2i} -\bar{ y}_{2})^{T}\Big) \\ & =& ( \frac{1} {N_{1} + N_{2} - 2})(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{ x}^{-1}\Big(\sum _{ i=1}^{N_{1} }(\mathbf{x}_{1i} -\bar{\mathbf{x}}_{1})(\mathbf{x}_{1i} -\bar{\mathbf{x}}_{1})^{T} {}\end{array}$$
(4)
$$\displaystyle\begin{array}{rcl} & & +\sum _{i=1}^{N_{2} }(\mathbf{x}_{2i} -\bar{\mathbf{x}}_{2})(\mathbf{x}_{2i} -\bar{\mathbf{x}}_{2})^{T}\Big)S_{ x}^{-1}(\bar{\mathbf{x}}_{ 1} -\bar{\mathbf{x}}_{2}) \\ & =& (\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{ x}^{-1}(\bar{\mathbf{x}}_{ 1} -\bar{\mathbf{x}}_{2}) {}\end{array}$$
(5)

and

$$\displaystyle\begin{array}{rcl} T_{y}^{2}& =& \frac{N_{1}N_{2}} {N_{1} + N_{2}}(\bar{y}_{1} -\bar{ y}_{2})^{T}S_{ y}^{-1}(\bar{y}_{ 1} -\bar{ y}_{2}) \\ & =& \frac{N_{1}N_{2}} {N_{1} + N_{2}}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{ x}^{-1}(\bar{\mathbf{x}}_{ 1} -\bar{\mathbf{x}}_{2}) \\ & =& T_{x}^{2} {}\end{array}$$
(6)

Thus, the T 2 statistic computed on vectorial input samples, i.e. T x 2, is mathematically equivalent to a one-dimensional T 2 statistic T y 2 computed on the scalar samples obtained by performing Fisher discriminant analysis on the input vectorial samples.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ingalhalikar, M., Khurd, P., Verma, R. (2014). Kernel-Based Morphometry of Diffusion Tensor Images. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_10

Download citation

Publish with us

Policies and ethics