Abstract
Voxel-based group-wise statistical analysis of diffusion tensor imaging (DTI) is an integral component in most population-based neuroimaging studies such as those studying brain development during infancy or aging, or those investigating structural differences between healthy and diseased populations. The majority of studies using DTI limit themselves by testing only certain properties of the tensor that mainly include anisotropy and diffusivity. However, the pathology under study may affect other aspects like the orientation information provided by the tensors. Therefore, for detecting subtle pathological changes it is important to perform group-wise testing on the whole tensor, which encompasses the changes in anisotropy, diffusivity and orientation. This is rendered challenging by the fact that conventional linear statistics cannot be applied to tensors. Moreover, the pathology over the population is unknown and could be non-linear, further complicating the group-based statistical analysis. This chapter gives a perspective on performing voxel-wise morphometry of tensor data using kernel-based approach. The method is referred as Kernel-based morphometry (KBM) as it models the tensor distribution using kernel principal component analysis (kPCA), which linearizes the data in high dimensional space. Subsequently a Hotelling T 2 test is performed on the high dimensional kernelized data to determine statistical group differences. We apply this method on simulated and real datasets and show that KBM can effectively identify the underlying tensorial distribution. Thus it can potentially elucidate pathology-induced population differences, thereby establishing a kernelized full tensor framework for population studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexander, A.L., Lee, J.E., Lazar, M., Boudos, R., DuBray, M.B., Oakes, T.R., Miller, J.N., Lu, J., Jeong, E.K., McMahon, W.M., Bigler, E.D., Lainhart, J.E.: Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34, 61–73 (2007)
Ardekani, B.A., Tabesh, A., Sevy, S., Robinson, D.G., Bilder, R.M., Szeszko, P.R.: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum. Brain. Mapp. 32, 1–9 (2011)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006)
Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11, 805–821 (2000)
Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., Reiss, A.L.: White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55, 323–326 (2004)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor mri. J. Magn. Reson. B 111, 209–219 (1996)
Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)
Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007)
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., Golani, I.: Controlling the false discovery rate in behavior genetics research. Behav. Brain. Res. 125, 279–284 (2001)
Burges, C.: Data mining and knowledge discovery handbook. Kluwer, New York (2005)
Calamante, F., Masterton, R.A.J., Tournier, J.D., Smith, R.E., Willats, L., Raffelt, D., Connelly, A.: Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain. Neuroimage 70, 199–210 (2013)
Cao, Y., Miller, M., Mori, S., Winslow, R.: Diffeomorphic matching of diffusion tensor images. In: Proceedings of CVPR-MMBIA, New York (2006)
Field, A.S., Alexander, A.L.: Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top. Magn. Reson. Imaging 15, 315–324 (2004)
Fletcher, T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)
Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23, 995–1005 (2004)
Fletcher, P.T., Whitaker, R.T., Tao, R., DuBray, M.B., Froehlich, A., Ravichandran, C., Alexander, A.L., Bigler, E.D., Lange, N., Lainhart, J.E.: Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. Neuroimage 51, 1117–1125 (2010)
Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002)
Girolami, M.: Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput. 14, 669–688 (2002)
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol 6, e159 (2008)
Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V.J., Meuli, R., Thiran, J.P., Grant, P.E.: White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl. Acad. Sci. U S A 107, 19067–19072 (2010)
Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T.P.L., Verma, R.: Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage 57, 918–927 (2011)
Ingalhalikar, M., Yang, J., Davatzikos, C., Verma, R.: DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors. Int. J. Imaging Syst. Technol. 20(2), 99–107 (2010)
Keller, T.A., Kana, R.K., Just, M.A.: A developmental study of the structural integrity of white matter in autism. Neuroreport 18, 23–27 (2007)
Khurd, P., Verma, R., Davatzikos, C.: Kernel-based manifold learning for statistical analysis of diffusion tensor images. Inf. Process. Med. Imaging 20, 581–593 (2007)
Kubicki, M., Westin, C.F., McCarley, R.W., Shenton, M.E.: The application of DTI to investigate white matter abnormalities in schizophrenia. Ann. N Y Acad. Sci. 1064, 134–148 (2005)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J. Math. Imaging Vis. 25(3), 423–444 (2006)
Li, Y., Zhu, H., Y, C., Ibrahim, J., An, H., Lin, W., Hall, C., Shen, D.: Radti: regression analyses of diffusion tensor images. In: SPIE Conference Proceedings, Dresden (2009)
Lim, K.O., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E.V., Pfefferbaum, A.: Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry 56, 367–374 (1999)
Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R., Benner, T., Sorensen, A.G., Fahlbusch, R.: Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56, 130–7 (2005). Discussion 138
Park, H.J., Westin, C.F., Kubicki, M., Maier, S.E., Niznikiewicz, M., Baer, A., Frumin, M., Kikinis, R., Jolesz, F.A., McCarley, R.W., Shenton, M.E.: White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. Neuroimage 23, 213–223 (2004)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)
Pierpaoli, C., Jezzard, P., Basser, P., Barnett, A.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637 (1996)
Scholkopf, B., Smola, A.: Learning with Kernels. MIT, Cambridge (2002)
Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Cross-subject comparison of principal diffusion direction maps. Magn. Reson. Med. 53, 1423–1431 (2005)
Schwartzman, A., Dougherty, R.F., Taylor, J.E.: Group comparison of eigenvalues and eigenvectors of diffusion tensors. J. Am. Stat. Assoc. 105(490), 588–599 (2010)
Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21, 1421–1439 (2002)
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.J.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006)
van den Heuvel, M.P., Mandl, R.C.W., Kahn, R.S., Hulshoff Pol, H.E.: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141 (2009)
Verhoeven, J.S., Cock, P.D., Lagae, L., Sunaert, S.: Neuroimaging autism. Neuroradiology 52, 3–14 (2010)
Verma, R., Khurd, P., Davatzikos, C.: On analyzing diffusion tensor images by identifying manifold structure using isomaps. IEEE Trans. Med. Imaging 26, 772–778 (2007)
Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004). http://radiology.rsnajnls.org/cgi/reprint/230/1/77.pdf.
Wu, Y.C., Field, A.S., Chung, M.K., Badie, B., Alexander, A.L.: Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn. Reson. Med. 52, 1146–1155 (2004)
Xu, D., Hao, X., Bansal, R., Plessen, K.J., Peterson, B.S.: Seamless warping of diffusion tensor fields. IEEE Trans. Med. Imaging 27, 285–299 (2008)
Xu, D., Mori, S., Shen, D., van Zijl, P.C.M., Davatzikos, C.: Spatial normalization of diffusion tensor fields. Magn. Reson. Med. 50, 175–182 (2003)
Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27, 230–244 (2005)
Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10, 764–785 (2006)
Acknowledgements
This work was supported by the NIH grants RO1-MH079938 and R01-MH092862.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Proof of the equivalence between Hotelling’s T 2 test and FDA [24].
Let x 1i , i = 1, ⋯ , N 1 be the p-dimensional data vectors belonging to class 1 and let x 2i , i = 1, ⋯ , N 2 be the p-dimensional data vectors belonging to class 2. Let \(\bar{\mathbf{x}}_{1},\bar{\mathbf{x}}_{2}\) denote the means for classes 1 and 2. Let \(S_{x} = ( \frac{1} {N_{1}+N_{2}-2})\Big(\sum _{i=1}^{N_{1}}(\mathbf{x}_{ 1i} -\bar{\mathbf{x}}_{1})(\mathbf{x}_{1i} -\bar{\mathbf{x}}_{1})^{T} +\sum _{ i=1}^{N_{2}}(\mathbf{x}_{ 2i} -\bar{\mathbf{x}}_{2})(\mathbf{x}_{2i} -\bar{\mathbf{x}}_{2})^{T}\Big)\).
Hotelling’s T 2 test: Then the T 2 test statistic is:
Assuming normal distributions for x 1i , i = 1, ⋯ , N 1 and x 2i , i = 1, ⋯ , N 2 implies that \(F_{x} = \frac{N_{1}+N_{2}-p-1} {(N_{1}+N_{2}-2)p}T_{x}^{2}\) has the cdf \(F(p,N_{1} + N_{2} - p - 1)\). Therefore, the parametric form of Hotelling’s T 2 test is sometimes refered to as the F-test.
FDA: The FDA optimal linear discriminant direction is \(w = S_{x}^{-1}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})\) and the corresponding scalar mapping is \(y = (\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{x}^{-1}x\).
Therefore, \(\bar{y}_{1} -\bar{ y}_{2} = (\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})^{T}S_{x}^{-1}(\bar{\mathbf{x}}_{1} -\bar{\mathbf{x}}_{2})\),
and
Thus, the T 2 statistic computed on vectorial input samples, i.e. T x 2, is mathematically equivalent to a one-dimensional T 2 statistic T y 2 computed on the scalar samples obtained by performing Fisher discriminant analysis on the input vectorial samples.
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ingalhalikar, M., Khurd, P., Verma, R. (2014). Kernel-Based Morphometry of Diffusion Tensor Images. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-54301-2_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54300-5
Online ISBN: 978-3-642-54301-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)