Abstract
Modern myoeletric prostheses necessitate more powerful control algorithms to derive hand movement information from sensor data. Common approaches utilize classifiers for recognizing motion or grip patterns from input data like myoeletric signals (MES). The selection of features for the classification process and the classifiers themselves impact the detection accuracy of the control schemes. In this contribution, we present a MATLABTM movement classification toolbox for sensor data recorded during hand movements. By covering different feature calculation- and classification-algorithms, the toolbox supports the modeling of select prostheses control schemes. In addition to MES, novel near-infrared (NIR) sensor input is equally supported by the toolbox. A modular development approach allows the integration of new features, classifiers as well as the extension to other types of sensor data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Muzumdar, A.: Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer (2004)
Englehart, K., Hudgins, B., Parker, P., Stevenson, M.: Classification of the Myoelectric Signal using Time-Frequency Based Representations. Medical Engineering & Physics 21(6-7), 431–438 (1999)
Attenberger, A., Buchenrieder, K.: Modeling and Visualization of Classification-Based Control Schemes for Upper Limb Prostheses. In: Popovic, M., Schätz, B., Voss, S. (eds.) ECBS, pp. 188–194. IEEE (2012)
Attenberger, A., Buchenrieder, K.: Modeling and Visualization of Classification-Based Control Schemes for Upper Limb Prostheses. Comput. Sci. Inf. Syst. 10(1), 349–367 (2013)
Burmeister, O., Reischl, M., Bretthauer, G., Mikut, R.: Data-Mining-Analysen mit der Matlab-Toolbox Gait-CAD (Data Mining Analyses with the Matlab Toolbox Gait-CAD). Automatisierungstechnik 56(7), 381–389 (2008)
Buchenrieder, K.: Dimensionality Reduction for the Control of Powered Upper Limb Prostheses. In: Proc. 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS 2007), pp. 327–333 (March 2007)
Hudgins, B., Parker, P., Scott, R.N.: A New Strategy for Multifunction Myoelectric Control (1993)
Clancy, E.A., Hogan, N.: Theoretic and Experimental Comparison of Root-Mean-Square and Mean-Absolute-Value Electromyogram Amplitude Detectors (1997)
Herrmann, S., Buchenrieder, K.: Advanced Control Schemes for Upper Limb Prosthesis. Advances in Medicine and Biology 15, 377–408 (2011)
Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal. In: Critical Reviews in Biomedical Engineering, pp. 459–485 (2002)
Englehart, K.: Signal Representation for Classification of the Transient Myoelectric Signal. PhD thesis, University of New Brunswick (October 1998)
Herrmann, S., Buchenrieder, K.: Fusion of Myoelectric and Near-Infrared Signals for Prostheses Control. In: Proc. 4th International Convention on Rehabilitation Engineering & Assistive Technology, iCREATe 2010, Kaki Bukit TechPark II, Singapore, Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre, pp. 54:1–54:4 (2010)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (August 2008)
The MathWorks, Inc.: Supervised Learning - MATLAB & Simulink - MathWorks Deutschland (May 2013), http://www.mathworks.de/de/help/stats/supervised-learning.html
Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)
McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability and Statistics. Wiley (2005)
Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Eckert, M.: Simulation und Validierung von Klassifikationsmethoden für die Steuerung von Handprothesen. Master’s thesis, Universität der Bundeswehr München (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Attenberger, A., Buchenrieder, K. (2013). A MATLAB Toolbox for Upper Limb Movement Classification. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2013. EUROCAST 2013. Lecture Notes in Computer Science, vol 8112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53862-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-53862-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-53861-2
Online ISBN: 978-3-642-53862-9
eBook Packages: Computer ScienceComputer Science (R0)